We present a measurement of the B-mode polarization power spectrum of the cosmic microwave background (CMB) using data taken from 2014 July to 2016 December with the Polarbear experiment. The CMB power spectra are measured using observations at 150 GHz with an instantaneous array sensitivity of NETarray=23μ K√s on a 670 square degree patch of sky centered at (R.A., decl.) = (+0h12m0s, -59°18′). A continuously rotating half-wave plate is used to modulate polarization and to suppress low-frequency noise. We achieve 32 μK arcmin effective polarization map noise with a knee in sensitivity of ℓ = 90, where the inflationary gravitational-wave signal is expected to peak. The measured B-mode power spectrum is consistent with a ΛCDM lensing and single dust component foreground model over a range of multipoles 50 ≤ ℓ ≤ 600. The data disfavor zero CℓBB at 2.2σ using this ℓ range of Polarbear data alone. We cross-correlate our data with Planck full mission 143, 217, and 353 GHz frequency maps and find the low-ℓ B-mode power in the combined data set to be consistent with thermal dust emission. We place an upper limit on the tensor-to-scalar ratio r < 0.90 at the 95% confidence level after marginalizing over foregrounds.
Adachi, S., Aguilar Faundez, M., Arnold, K., Baccigalupi, C., Barron, D., Beck, D., et al. (2020). A Measurement of the Degree-scale CMB B-mode Angular Power Spectrum with Polarbear. THE ASTROPHYSICAL JOURNAL, 897(1) [10.3847/1538-4357/ab8f24].
A Measurement of the Degree-scale CMB B-mode Angular Power Spectrum with Polarbear
Poletti D.;
2020
Abstract
We present a measurement of the B-mode polarization power spectrum of the cosmic microwave background (CMB) using data taken from 2014 July to 2016 December with the Polarbear experiment. The CMB power spectra are measured using observations at 150 GHz with an instantaneous array sensitivity of NETarray=23μ K√s on a 670 square degree patch of sky centered at (R.A., decl.) = (+0h12m0s, -59°18′). A continuously rotating half-wave plate is used to modulate polarization and to suppress low-frequency noise. We achieve 32 μK arcmin effective polarization map noise with a knee in sensitivity of ℓ = 90, where the inflationary gravitational-wave signal is expected to peak. The measured B-mode power spectrum is consistent with a ΛCDM lensing and single dust component foreground model over a range of multipoles 50 ≤ ℓ ≤ 600. The data disfavor zero CℓBB at 2.2σ using this ℓ range of Polarbear data alone. We cross-correlate our data with Planck full mission 143, 217, and 353 GHz frequency maps and find the low-ℓ B-mode power in the combined data set to be consistent with thermal dust emission. We place an upper limit on the tensor-to-scalar ratio r < 0.90 at the 95% confidence level after marginalizing over foregrounds.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.