Social media has become a widespread element of people’s everyday life, which is used to communicate and generate contents. Among the several ways to express a reaction to social media contents, the “Likes” are critical. Indeed, they convey preferences, which drive existing markets or allow the creation of new ones. Nevertheless, the appreciation indicators have some complex features, as for example the interpretation of the absence of “Likes”. In this case, the lack of approval may be considered as a specific behaviour. The present study aimed to define whether the absence of Likes may indicate the presence of a specific behaviour through the contextualization of the treatment of missing data applied to real cases. We provided a practical strategy for extracting more knowledge from social media data, whose synthesis raises several measurement problems. We proposed an approach based on the disambiguation of missing data in two modalities: “Dislike” and “Nothing”. Finally, a data pre-processing technique was suggested to increase the signal of social media data.
Mariani, P., Marletta, A. (2022). Missing value or behaviour: how to increase the signal of social media data. METRON, 80(2), 139-151 [10.1007/s40300-021-00216-7].
Missing value or behaviour: how to increase the signal of social media data
Mariani, P;Marletta, A
2022
Abstract
Social media has become a widespread element of people’s everyday life, which is used to communicate and generate contents. Among the several ways to express a reaction to social media contents, the “Likes” are critical. Indeed, they convey preferences, which drive existing markets or allow the creation of new ones. Nevertheless, the appreciation indicators have some complex features, as for example the interpretation of the absence of “Likes”. In this case, the lack of approval may be considered as a specific behaviour. The present study aimed to define whether the absence of Likes may indicate the presence of a specific behaviour through the contextualization of the treatment of missing data applied to real cases. We provided a practical strategy for extracting more knowledge from social media data, whose synthesis raises several measurement problems. We proposed an approach based on the disambiguation of missing data in two modalities: “Dislike” and “Nothing”. Finally, a data pre-processing technique was suggested to increase the signal of social media data.File | Dimensione | Formato | |
---|---|---|---|
Mariani-Marletta2021_Article_MissingValueOrBehaviourHowToIn.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
273.31 kB
Formato
Adobe PDF
|
273.31 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.