Interactions among multiple time series of positive random variables are crucial in diverse financial applications, from spillover effects to volatility interdependence. A popular model in this setting is the vector Multiplicative Error Model (vMEM) which poses a linear iterative structure on the dynamics of the conditional mean, perturbed by a multiplicative innovation term. A main limitation of vMEM is however its restrictive assumption on the distribution of the random innovation term. A Bayesian semiparametric approach that models the innovation vector as an infinite location-scale mixture of multidimensional kernels with support on the positive orthant is used to address this major shortcoming of vMEM. Computational complications arising from the constraints to the positive orthant are avoided through the formulation of a slice sampler on the parameter-extended unconstrained version of the model. The method is applied to simulated and real data and a flexible specification is obtained that outperforms the classical ones in terms of fitting and predictive power.

Donelli, N., Peluso, S., Mira, A. (2021). A Bayesian semiparametric vector Multiplicative Error Model. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 161(September 2021) [10.1016/j.csda.2021.107242].

A Bayesian semiparametric vector Multiplicative Error Model

Donelli N.;Peluso S.
;
2021

Abstract

Interactions among multiple time series of positive random variables are crucial in diverse financial applications, from spillover effects to volatility interdependence. A popular model in this setting is the vector Multiplicative Error Model (vMEM) which poses a linear iterative structure on the dynamics of the conditional mean, perturbed by a multiplicative innovation term. A main limitation of vMEM is however its restrictive assumption on the distribution of the random innovation term. A Bayesian semiparametric approach that models the innovation vector as an infinite location-scale mixture of multidimensional kernels with support on the positive orthant is used to address this major shortcoming of vMEM. Computational complications arising from the constraints to the positive orthant are avoided through the formulation of a slice sampler on the parameter-extended unconstrained version of the model. The method is applied to simulated and real data and a flexible specification is obtained that outperforms the classical ones in terms of fitting and predictive power.
Articolo in rivista - Articolo scientifico
Bayesian nonparametrics; Multiplicative Error Model; Parameter-extended Gibbs sampler;
English
15-apr-2021
2021
161
September 2021
107242
partially_open
Donelli, N., Peluso, S., Mira, A. (2021). A Bayesian semiparametric vector Multiplicative Error Model. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 161(September 2021) [10.1016/j.csda.2021.107242].
File in questo prodotto:
File Dimensione Formato  
Donelli-2021-Computational Statistics and Data Analysis-Arxiv-Preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF Visualizza/Apri
Donelli-2021-Computational Statistics and Data Analysis-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/317057
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
Social impact