Let A be an associative algebra over a field F of characteristic zero endowed with a graded involution or a superinvolution ⁎ and let cn⁎(A) be its sequence of ⁎-codimensions. In [4,12] it was proved that if A is finite dimensional such sequence is polynomially bounded if and only if A generates a variety not containing a finite number of ⁎-algebras: the group algebra of Z2 and a 4-dimensional subalgebra of the 4×4 upper triangular matrices with suitable graded involutions or superinvolutions. In this paper we focus our attention on such algebras since they are the only finite dimensional ⁎-algebras, up to T2⁎-equivalence, generating varieties of almost polynomial growth, i.e., varieties of exponential growth such that any proper subvariety has polynomial growth. We classify the subvarieties of such varieties by giving a complete list of generating finite dimensional ⁎-algebras. Along the way we classify all minimal varieties of polynomial growth and surprisingly we show that their number is finite for any given growth. Finally we describe the ⁎-algebras whose ⁎-codimensions are bounded by a linear function.
Ioppolo, A., La Mattina, D. (2017). Polynomial codimension growth of algebras with involutions and superinvolutions. JOURNAL OF ALGEBRA, 472, 519-545 [10.1016/j.jalgebra.2016.10.007].
Polynomial codimension growth of algebras with involutions and superinvolutions
Ioppolo A.
;
2017
Abstract
Let A be an associative algebra over a field F of characteristic zero endowed with a graded involution or a superinvolution ⁎ and let cn⁎(A) be its sequence of ⁎-codimensions. In [4,12] it was proved that if A is finite dimensional such sequence is polynomially bounded if and only if A generates a variety not containing a finite number of ⁎-algebras: the group algebra of Z2 and a 4-dimensional subalgebra of the 4×4 upper triangular matrices with suitable graded involutions or superinvolutions. In this paper we focus our attention on such algebras since they are the only finite dimensional ⁎-algebras, up to T2⁎-equivalence, generating varieties of almost polynomial growth, i.e., varieties of exponential growth such that any proper subvariety has polynomial growth. We classify the subvarieties of such varieties by giving a complete list of generating finite dimensional ⁎-algebras. Along the way we classify all minimal varieties of polynomial growth and surprisingly we show that their number is finite for any given growth. Finally we describe the ⁎-algebras whose ⁎-codimensions are bounded by a linear function.File | Dimensione | Formato | |
---|---|---|---|
3. ILM-2017-JA.pdf
Solo gestori archivio
Tipologia di allegato:
Submitted Version (Pre-print)
Dimensione
376.98 kB
Formato
Adobe PDF
|
376.98 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.