By generalizing our previous work on the parity symmetry, the partition function of a Yang-Mills theory is decomposed into a sum of path integrals each giving the contribution from multiplets of states with fixed quantum numbers associated to parity, charge conjugation, translations, rotations and central conjugations. Ratios of path integrals and correlation functions can then be computed with a multi-level Monte Carlo integration scheme whose numerical cost, at a fixed statistical precision and at asymptotically large times, increases power-like with the time extent of the lattice. The strategy is implemented for the SU(3) Yang-Mills theory, and a full-fledged computation of the mass and multiplicity of the lightest glueball with vacuum quantum numbers is carried out at two values of the lattice spacing (0.17 and 0.12 fm).
Giusti, L., Della Morte, M. (2011). Glueball masses from ratios of path integrals. POS PROCEEDINGS OF SCIENCE, Lattice 2011, 308.
Glueball masses from ratios of path integrals
GIUSTI, LEONARDO;
2011
Abstract
By generalizing our previous work on the parity symmetry, the partition function of a Yang-Mills theory is decomposed into a sum of path integrals each giving the contribution from multiplets of states with fixed quantum numbers associated to parity, charge conjugation, translations, rotations and central conjugations. Ratios of path integrals and correlation functions can then be computed with a multi-level Monte Carlo integration scheme whose numerical cost, at a fixed statistical precision and at asymptotically large times, increases power-like with the time extent of the lattice. The strategy is implemented for the SU(3) Yang-Mills theory, and a full-fledged computation of the mass and multiplicity of the lightest glueball with vacuum quantum numbers is carried out at two values of the lattice spacing (0.17 and 0.12 fm).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.