Two-dimensional materials have aroused great interest among the scientific community thanks to their exceptional properties and promising applications in many technological fields. Nevertheless, over the last years, the frontline of research has moved from the study of basic properties of pure 2D crystals to chemical modified forms, i.e. doped 2D materials, and their interaction with other systems, such as nanoparticles, or surfaces. Within this frame, metal substrates are often employed as heterogeneous catalysts for the growth of 2D materials, although their role is often relegated to mere supporting materials, with a little attention to the potential that these hybrid interfaces (two-dimensional materials/metal surfaces) offer. This work investigates complex interfaces between two-dimensional materials and metal surfaces, both from the point of view of basic understanding of such systems and application in electrocatalysis and sensing. In particular, the thesis is mainly addressed to the understanding of the synergistic role of the underlying metal substrate and defects like vacancies or dopants on the chemical and physical properties of the two-dimensional adlayer. We employed state-of-the-art computational methods to model systems that are as realistic as possible. All calculations have been performed through density functional theory (DFT), using dispersion-corrected functionals. The main idea of this work is to exploit the high surface area of two-dimensional materials to trap objects that can be atoms or metal clusters, as well as molecules. Such objects can be used as catalytic sites for many reactions of great interest or induce some modification in the 2D material, making it suitable as a sensor.
I materiali bidimensionali hanno suscitato grande interesse da parte della comunità scientifica grazie alle loro eccezionali proprietà fisiche e le loro promettenti applicazioni in molti campi di interesse tecnologico. In particolare, negli ultimi anni, la frontiera della ricerca si è spostata dallo studio delle loro proprietà di base a sistemi 2D modificati chimicamente, quali materiali drogati, e alla loro interazione con altri sistemi, come nanoparticelle o superfici. In questo contesto, le superfici metalliche sono spesso impiegate come catalizzatori eterogenei per la crescita mediante CVD di materiali 2D, sebbene il loro ruolo sia spesso relegato a mero materiale di supporto, con scarsa attenzione al potenziale che queste interfacce ibride offrono. Questo lavoro di tesi presenta un’analisi di interfacce complesse tra materiali bidimensionali e superfici metalliche, sia dal punto della loro comprensione di base che alla loro applicazione in elettrocatalisi e nella sensoristica. In particolare, il lavoro è principalmente indirizzato alla comprensione del ruolo sinergico del substrato metallico sottostante e di difetti come vacanze o droganti sulle proprietà chimiche e fisiche dello strato bidimensionale supportato. Metodi computazionali all'avanguardia sono stati impiegati per modellizzare sistemi quanto più realistici. Tutti i calcoli sono stati eseguiti attraverso la teoria del funzionale della densità (DFT), utilizzando funzionali corretti per le forze di dispersione. L'idea principale di questo lavoro è quella di sfruttare l'elevata area superficiale che i materiali bidimensionali offrono per intrappolare oggetti quali atomi o cluster metallici. Tali oggetti possono essere usati come siti catalitici per molte reazioni di grande interesse o favorire l’interazione di questi sistemi con gas molecolari.
(2021). Quantum Mechanical Modeling of Chemical Activated 2D-Materials for Electrocatalysis and Sensing. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).
Quantum Mechanical Modeling of Chemical Activated 2D-Materials for Electrocatalysis and Sensing
PERILLI, DANIELE
2021
Abstract
Two-dimensional materials have aroused great interest among the scientific community thanks to their exceptional properties and promising applications in many technological fields. Nevertheless, over the last years, the frontline of research has moved from the study of basic properties of pure 2D crystals to chemical modified forms, i.e. doped 2D materials, and their interaction with other systems, such as nanoparticles, or surfaces. Within this frame, metal substrates are often employed as heterogeneous catalysts for the growth of 2D materials, although their role is often relegated to mere supporting materials, with a little attention to the potential that these hybrid interfaces (two-dimensional materials/metal surfaces) offer. This work investigates complex interfaces between two-dimensional materials and metal surfaces, both from the point of view of basic understanding of such systems and application in electrocatalysis and sensing. In particular, the thesis is mainly addressed to the understanding of the synergistic role of the underlying metal substrate and defects like vacancies or dopants on the chemical and physical properties of the two-dimensional adlayer. We employed state-of-the-art computational methods to model systems that are as realistic as possible. All calculations have been performed through density functional theory (DFT), using dispersion-corrected functionals. The main idea of this work is to exploit the high surface area of two-dimensional materials to trap objects that can be atoms or metal clusters, as well as molecules. Such objects can be used as catalytic sites for many reactions of great interest or induce some modification in the 2D material, making it suitable as a sensor.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_748030.pdf
accesso aperto
Descrizione: Quantum Mechanical Modeling of Chemical Activated 2D-Materials for Electrocatalysis and Sensing
Tipologia di allegato:
Doctoral thesis
Dimensione
9.76 MB
Formato
Adobe PDF
|
9.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.