Alzheimer's disease (AD) is a major public health concern and has been identified as a priority for research in Life Science. The two core pathological hallmarks of AD are extracellular amyloid plaques and intracellular neurofibrillary tangles which underlie microglial and neuronal damage, neuroinflammation and cognitive impairment. Soluble oligomers are the most toxic species of β-amyloid (Aβ) and interact with several protein kinases such as Ras/MAPK and PI3K/AKT pathways, which regulate many cellular processes and cognitive functions. These pathways mediate Aβ toxicity, regulating some molecular mechanisms involved in neuronal degeneration such as cytoskeletal impairment, glutamate excitotoxicity and neuroinflammation. In the last years much attention has been focused on the potential role of natural compounds as neuroprotective agents. Hop (Humulus Lupulus) contains flavonoids, aromatic molecules which have antioxidant, anti-inflammatory and anti-atherogenic properties. In fact, hop extract has anti-aggregating effects on Aβ, and it seems to prevent its production in cultured cells. Aβ induces also the activation of the pattern recognition receptor Nod-like receptor protein 3 (NLRP3) inflammasome complex in microglia and the consequent release of proinflammatory cytokines, playing a pivotal role in AD-associated neuroinflammation. NLRP3 activation results in the release of inflammatory mediators, including ASC protein complexes (ASC specks), IL-1β and IL-18, that facilitate Aβ deposition and neuroinflammation in a self-feeding pathogenic loop. Since specific therapeutical strategies are still lacking, the dampening of the inflammasome assembly and activation could be a new strategy for AD. The overall focus of this study is to investigate molecular mechanisms involved in neurodegenerative diseases and in neuroinflammation, using peripheral ex vivo cellular models from AD, to check new potential therapeutical targets. In order to characterize the complex interactions among Aβ, MAPK and AKT signaling, we used fibroblasts from sporadic AD patients with different disease severity. To evaluate any molecular mechanisms that could prevent or modulate Aβ-induced toxicity, the potential cytoprotective effects of Hop extract and related intracellular signaling were also investigated. Fibroblasts provide a useful cellular model for studying AD, since they could be differentiated into patient-specific neural cell lines, using iPSC technologies. Moreover, particular interest was given to NLRP3-inflammasome activation pathway. We investigated the involvement of NLRP3 inflammasome activation on intracellular pathways and their downstream targets, using a combination of in vitro studies and patient-derived samples. In particular, we used macrophage-derived THP-1 human monocytes and peripheral blood mononuclear cells (PBMC)-derived monocytes from healthy control (HC) subjects and AD patients, to analyse phagocytosis, autophagy and apoptosis modulation and the effects of the nucleoside reverse transcriptase inhibitor Stavudine (D4T), that reduces NLRP3 inflammasome activation blocking the purinergic receptor P2X7R. Furthermore, we analyzed the NLRP3 inflammasome pathway and the role of the selective NLRP3 inhibitor CRID3, to compare the effects of inflammasome inhibition through two different mechanisms. At this purpose, HC and AD-derived monocytes were differentiated into microglia-like cells (MDMIs) and characterized for myeloid surface and intracellular proteins expression. Key microglia functions such as inflammatory cytokines release, Aβ phagocytosis and degradation were evaluated upon exposure to NLRP3 inflammasome activators with or without CRID3. MDMIs reflected many features of microglia and, as fibroblasts-derived iPSCs, they are attractive cellular models helpful to understand AD pathogenesis, identify therapeutic targets and allow large-scale drug screening of the novel therapeutic candidates.

La malattia di Alzheimer (AD) rappresenta una delle principali problematiche per la salute pubblica ed è stata identificata come una priorità per la ricerca. Le due caratteristiche patologiche fondamentali della malattia sono le placche amiloidi e i grovigli neuro fibrillari che sono alla base della neuroinfiammazione e del deterioramento cognitivo.Le forme solubili degli oligomeri sono la specie più tossica della β-amiloide (Aβ) e interagiscono con diverse chinasi proteiche coinvolte nella trasduzione del segnale intracellulare come Ras/MAPK e PI3K/AKT che regolano molti processi cellulari e funzioni cognitive, e alcuni meccanismi molecolari coinvolti nella degenerazione neuronale, come l'iperfosforilazione di tau e l'eccitotossicità del glutammato. Negli ultimi anni molta attenzione è stata focalizzata sull'utilizzo di composti naturali come agenti neuroprotettivi. Il luppolo (Humulus Lupulus) contiene flavonoidi, molecole aromatiche che hanno proprietà antiossidanti e antinfiammatorie. È stato dimostrato che l'estratto di luppolo ha effetti antiaggreganti sull’Aβ e sembra impedire la sua produzione nelle cellule in coltura. L'accumulo di Aβ induce anche l'attivazione della proteina 3 del recettore Nod-like receptor 3 (NLRP3) dell’inflammosoma e il conseguente rilascio di citochine proinfiammatorie, il quale svolge un ruolo fondamentale nella neuroinfiammazione associata all'AD. NLRP3 attivato induce la produzione e il rilascio di mediatori infiammatori, tra cui i complessi proteici ASC (ASC specks), IL-1β e IL-18, che facilitano la deposizione di Aβ in un ciclo che si auto alimenta. Impedire l’assemblaggio e l'attivazione del complesso dell’inflammosoma potrebbe essere una possibile strategia per la terapia dell'AD. L'obiettivo generale di questo studio è quello di indagare i meccanismi molecolari coinvolti nelle malattie neurodegenerative e nella neuroinfiammazione utilizzando modelli cellulari periferici ex vivo di AD.Al fine di caratterizzare le interazioni Aβ e vie di trasduzione del segnale MAPK e AKT, abbiamo utilizzato fibroblasti di pazienti AD sporadici con diversa gravità della malattia. Per valutare i meccanismi molecolari che potrebbero prevenire o modulare la tossicità indotta da Aβ, sono stati studiati anche i potenziali effetti citoprotettivi dell'estratto di luppolo e il relativo signaling intracellulare. Inoltre, è stato dato particolare interesse alla via di attivazione del NLRP3-infiammasoma. Abbiamo studiato il coinvolgimento dell'attivazione di NLRP3 sulle vie MAPK e AKT e sui loro bersagli a valle, utilizzando una combinazione di studi in vitro e di campioni ottenuti dai pazienti. In particolare, abbiamo utilizzato monociti umani THP-1 di derivazione macrofagica e monociti derivati da cellule mononucleate del sangue periferico (PBMC) di soggetti sani (HC) e pazienti affetti da AD, per analizzare la modulazione autofagica e gli effetti della Stavudina (D4T), un inibitore nucleosidico della trascrittasi inversa, che riduce l'attivazione dell'inflammosoma bloccando il recettore purinergico P2X7R. Inoltre, abbiamo analizzato il pathway di attivazione dell'inflammosoma NLRP3 e il ruolo di CRID3 un inibitore selettivo, per confrontare gli effetti dell’inibizione dell’inflammosoma attraverso due pathway differenti. I monociti derivati da HC e AD sono stati differenziati in cellule microglia-like (MDMIs) e caratterizzati per l'espressione di proteine intracellulari e di superficie tipiche delle cellule mieloidi. Funzioni tipiche della microglia come il rilascio di citochine infiammatorie, la fagocitosi e la degradazione sono state valutate anche in seguito all'esposizione di attivatori dell'inflammosoma con o senza CRID3. MDMIs riflettono molte caratteristiche della microglia e sono un modello cellulare utile per comprendere la patogenesi dell'AD, identificare i target terapeutici e consentire lo screening farmacologico su larga scala dei nuovi composti per uso terapeutico.

(2021). STUDY OF MOLECULAR MECHANISMS AND NEW STRATEGIES AGAINST A CYTOTOXICITY AND NEUROINFLAMMATION IN EX VIVO CELLULAR MODELS FROM ALZHEIMER’S DISEASE PATIENTS. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).

STUDY OF MOLECULAR MECHANISMS AND NEW STRATEGIES AGAINST A CYTOTOXICITY AND NEUROINFLAMMATION IN EX VIVO CELLULAR MODELS FROM ALZHEIMER’S DISEASE PATIENTS

BAZZINI, CHIARA
2021

Abstract

Alzheimer's disease (AD) is a major public health concern and has been identified as a priority for research in Life Science. The two core pathological hallmarks of AD are extracellular amyloid plaques and intracellular neurofibrillary tangles which underlie microglial and neuronal damage, neuroinflammation and cognitive impairment. Soluble oligomers are the most toxic species of β-amyloid (Aβ) and interact with several protein kinases such as Ras/MAPK and PI3K/AKT pathways, which regulate many cellular processes and cognitive functions. These pathways mediate Aβ toxicity, regulating some molecular mechanisms involved in neuronal degeneration such as cytoskeletal impairment, glutamate excitotoxicity and neuroinflammation. In the last years much attention has been focused on the potential role of natural compounds as neuroprotective agents. Hop (Humulus Lupulus) contains flavonoids, aromatic molecules which have antioxidant, anti-inflammatory and anti-atherogenic properties. In fact, hop extract has anti-aggregating effects on Aβ, and it seems to prevent its production in cultured cells. Aβ induces also the activation of the pattern recognition receptor Nod-like receptor protein 3 (NLRP3) inflammasome complex in microglia and the consequent release of proinflammatory cytokines, playing a pivotal role in AD-associated neuroinflammation. NLRP3 activation results in the release of inflammatory mediators, including ASC protein complexes (ASC specks), IL-1β and IL-18, that facilitate Aβ deposition and neuroinflammation in a self-feeding pathogenic loop. Since specific therapeutical strategies are still lacking, the dampening of the inflammasome assembly and activation could be a new strategy for AD. The overall focus of this study is to investigate molecular mechanisms involved in neurodegenerative diseases and in neuroinflammation, using peripheral ex vivo cellular models from AD, to check new potential therapeutical targets. In order to characterize the complex interactions among Aβ, MAPK and AKT signaling, we used fibroblasts from sporadic AD patients with different disease severity. To evaluate any molecular mechanisms that could prevent or modulate Aβ-induced toxicity, the potential cytoprotective effects of Hop extract and related intracellular signaling were also investigated. Fibroblasts provide a useful cellular model for studying AD, since they could be differentiated into patient-specific neural cell lines, using iPSC technologies. Moreover, particular interest was given to NLRP3-inflammasome activation pathway. We investigated the involvement of NLRP3 inflammasome activation on intracellular pathways and their downstream targets, using a combination of in vitro studies and patient-derived samples. In particular, we used macrophage-derived THP-1 human monocytes and peripheral blood mononuclear cells (PBMC)-derived monocytes from healthy control (HC) subjects and AD patients, to analyse phagocytosis, autophagy and apoptosis modulation and the effects of the nucleoside reverse transcriptase inhibitor Stavudine (D4T), that reduces NLRP3 inflammasome activation blocking the purinergic receptor P2X7R. Furthermore, we analyzed the NLRP3 inflammasome pathway and the role of the selective NLRP3 inhibitor CRID3, to compare the effects of inflammasome inhibition through two different mechanisms. At this purpose, HC and AD-derived monocytes were differentiated into microglia-like cells (MDMIs) and characterized for myeloid surface and intracellular proteins expression. Key microglia functions such as inflammatory cytokines release, Aβ phagocytosis and degradation were evaluated upon exposure to NLRP3 inflammasome activators with or without CRID3. MDMIs reflected many features of microglia and, as fibroblasts-derived iPSCs, they are attractive cellular models helpful to understand AD pathogenesis, identify therapeutic targets and allow large-scale drug screening of the novel therapeutic candidates.
FERRARESE, CARLO
ZOIA, CHIARA PAOLA
Neuroinfiammazione; Meccanismi-molecolar; Modelli ex vivo; Nuove terapie; Malattia Alzheimer
Neuroinflammation; Molecular mechanisms; Ex vivo models; New drugs; Malattia Alzheimer
BIO/11 - BIOLOGIA MOLECOLARE
English
20-gen-2021
NEUROSCIENZE
33
2019/2020
open
(2021). STUDY OF MOLECULAR MECHANISMS AND NEW STRATEGIES AGAINST A CYTOTOXICITY AND NEUROINFLAMMATION IN EX VIVO CELLULAR MODELS FROM ALZHEIMER’S DISEASE PATIENTS. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_796263.pdf

accesso aperto

Descrizione: Tesi
Tipologia di allegato: Doctoral thesis
Dimensione 6.07 MB
Formato Adobe PDF
6.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/306480
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact