The task of Named Entity Recognition (NER) is aimed at identifying named entities in a given text and classifying them into pre-defined domain entity types such as persons, organizations, locations. Most of the existing NER systems make use of generic entity type classification schemas, however, the comparison and integration of (more or less) different entity types among different NER systems is a complex problem even for human experts. In this paper, we propose a supervised approach called L2AWE (Learning To Adapt with Word Embeddings) which aims at adapting a NER system trained on a source classification schema to a given target one. In particular, we validate the hypothesis that the embedding representation of named entities can improve the semantic meaning of the feature space used to perform the adaptation from a source to a target domain. The results obtained on benchmark datasets of informal text show that L2AWE not only outperforms several state of the art models, but it is also able to tackle errors and uncertainties given by NER systems.

Nozza, D., Manchanda, P., Fersini, E., Palmonari, M., Messina, E. (2021). LearningToAdapt with word embeddings: Domain adaptation of Named Entity Recognition systems. INFORMATION PROCESSING & MANAGEMENT, 58(3 (May 2021)) [10.1016/j.ipm.2021.102537].

LearningToAdapt with word embeddings: Domain adaptation of Named Entity Recognition systems

Nozza D.
;
Manchanda P.
;
Fersini E.
;
Palmonari M.
;
Messina Enza
2021

Abstract

The task of Named Entity Recognition (NER) is aimed at identifying named entities in a given text and classifying them into pre-defined domain entity types such as persons, organizations, locations. Most of the existing NER systems make use of generic entity type classification schemas, however, the comparison and integration of (more or less) different entity types among different NER systems is a complex problem even for human experts. In this paper, we propose a supervised approach called L2AWE (Learning To Adapt with Word Embeddings) which aims at adapting a NER system trained on a source classification schema to a given target one. In particular, we validate the hypothesis that the embedding representation of named entities can improve the semantic meaning of the feature space used to perform the adaptation from a source to a target domain. The results obtained on benchmark datasets of informal text show that L2AWE not only outperforms several state of the art models, but it is also able to tackle errors and uncertainties given by NER systems.
Articolo in rivista - Articolo scientifico
Domain adaptation; Named Entity Recognition; Word embeddings;
English
19-feb-2021
2021
58
3 (May 2021)
102537
open
Nozza, D., Manchanda, P., Fersini, E., Palmonari, M., Messina, E. (2021). LearningToAdapt with word embeddings: Domain adaptation of Named Entity Recognition systems. INFORMATION PROCESSING & MANAGEMENT, 58(3 (May 2021)) [10.1016/j.ipm.2021.102537].
File in questo prodotto:
File Dimensione Formato  
L2A_with_Word_Embeddings (1).pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 930.31 kB
Formato Adobe PDF
930.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/305636
Citazioni
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 33
Social impact