The scope of genome engineering in hematopoietic stem/progenitor cells (HSPCs) has broadened from random to precise genome insertions for treating genetic diseases of the blood lineages. Targeted editing of inherited mutant genes allows in situ correction and functional reconstitution with preserved expression control. We recently showed that both the induced double-strand DNA breaks and the AAV6 genome trigger a p53-dependent DNA damage response in HSPC delaying proliferation and decreasing hematopoietic reconstitution after xenotransplantation. Suppression of this response by transient expression of a dominant negative p53 released cell-cycle block and rescued hematopoietic reconstitution. Yet, the underlying biology remained unknown as well as the impact of gene editing on clonal dynamics of HDR-edited HSPC upon transplantation. Moreover, it has long been contended that the quiescence of primitive HSC constrains HDR-mediated gene editing, thus limiting its perspective clinical applications in several diseases. Here, we first overcame such constraints by transiently expressing the adenovirus 5 protein E4orf6/7, which operates the major cell cycle controller E2F, together with the nuclease. By global and targeted gene expression analysis we showed engagement of targeted cells in S/G2 phases with concomitant upregulation of all major components of the HDR machinery, thus increasing the efficiency of targeted transgene insertion. Combined E4orf6/7 expression and p53 inhibition enhanced >50% HDR efficiency within human graft surpassing the levels reported until now in the literature. Such outcome was reproducible across several HSPC donors and sources, genomic loci and conceivably portable to most types of editing platforms. In parallel, we devised a novel technology (BAR-seq) which enables clonal tracking of individual HDR-edited HSC by introducing a unique heritable barcode in the AAV6 template. Deep sequencing of integrated BARs in human hematochimeric mice showed that only few (5-10) dominant clones of edited HSC robustly contributed to the hematopoietic graft long-term after transplant. Transient p53 inhibition during editing enabled substantial increase in polyclonal graft composition without altering individual HSC output, thus explaining the improved engraftment and highlighting the p53-mediated response as culprit of an otherwise oligoclonal hematopoiesis. Importantly, BAR-seq provided the first direct evidence that human HDR-edited HSC maintain multilineage potential and undergo multiple rounds of symmetric and asymmetric divisions in primary and secondary xenogeneic hosts. Altogether, we expect that the substantial gains obtained in HDR efficiency and polyclonal repopulation by our improved editing protocol should broaden applicability of HSC gene editing and pave its way to clinical translation.
Negli ultimi anni, l’editing genetico nelle cellule staminali/progenitrici ematopoietiche umane (HSPC) per il trattamento di malattie genetiche del sangue è migliorato drasticamente trasformando inserzioni genetiche casuali in precise e mirate modificazioni del genoma. La modifica mirata dei geni mutati ereditati consente la correzione in situ e la ricostituzione funzionale con il mantenimento del controllo endogeno dell'espressione. Recentemente abbiamo dimostrato che sia le rotture del DNA a doppio filamento indotte dall’editing che il genoma stesso dell’Adeno-Associated Virus 6 (AAV) innescano una risposta dipendente da p53 nell'HSPC che risulta in un ritardo della proliferazione con conseguente diminuzione della ricostituzione ematopoietica dopo il trapianto delle cellule editate in animali immuno-compromessi. Per cui, abbiamo quindi dimostrato come la soppressione di questa risposta mediante l’espressione transitoria della forma negativa dominante di p53 preservi la ricostituzione del lineage ematopoietico. Tuttavia, la biologia sottostante è rimasta sconosciuta, così come l'impatto dell'editing genetico sulle dinamiche clonali dell'HSPC modificate con riparo diretto per omologia (Homology Directed Repair, HDR) al momento del trapianto. Inoltre, lo stato quiescente delle HSC primitive costituisce un limite per l’editing genetico mediato da HDR, riducendo le sue possibili applicazioni cliniche. In questo lavoro, abbiamo prima superato tale limite esprimendo transitoriamente la proteina dell'adenovirus 5 E4orf6/7, che regola il principale controllore del ciclo cellulare, E2F, insieme alla nucleasi. Mediante un'analisi dell'espressione genica globale e mirata, abbiamo dimostrato come E4orf6/7 spinga le cellule in fase S/G2 con concomitante sovra-regolazione di tutti i principali componenti del macchinario HDR, aumentando così l'efficienza dell'inserimento del transgene in cellule precedentemente quiescenti. Nel contesto dello xenotrapianto, l'espressione combinata di E4orf6/7 e l'inibizione di p53 hanno migliorato l'efficienza del HDR (>50%) all'interno dell'innesto umano totale, superando i livelli riportati fino ad ora in letteratura. Tale risultato è stato riprodotto in diversi donatori da diverse fonti di HSPC e sono stati modificati più loci genomici, dimostrando la maggior versatilità di questa piattaforma se paragonata ad altre strategie di editing. In parallelo, abbiamo ideato una nuova tecnologia (BAR-seq) che consente il monitoraggio clonale di singole HSC modificate con HDR. Questo approccio prevede l’introduzione di un codice a barre ereditabile univoco (BAR) nel templato AAV6 necessario al HDR. Il sequenziamento ad alta copertura di tali sequenze negli xenotrapianti ha mostrato come l’editing genetico risulti in un attecchimento di pochi cloni dominanti. Mentre l'inibizione transitoria di p53 durante l’editing ha consentito un aumento sostanziale della composizione clonale dell'innesto senza alterare la capacità ripopolante delle HSC. Inoltre, questi dati suggeriscono come la risposta mediata da p53 sia responsabile di un'ematopoiesi oligoclonale. È importante sottolineare che il BAR-seq ha fornito la prima prova diretta che le HSC umane modificate con HDR mantengono un potenziale multilineage e subiscono più cicli di divisioni simmetriche e asimmetriche nei trapianti primari e secondari. In conclusione, auspichiamo che i miglioramenti messi a punto nel nostro protocollo di editing possano ampliare le possibili applicazioni cliniche dell’editing genetico.
(2021). IMPROVING TARGETED GENE EDITING IN HEMATOPOIETIC STEM CELLS FOR CLINICAL TRANSLATION. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).
IMPROVING TARGETED GENE EDITING IN HEMATOPOIETIC STEM CELLS FOR CLINICAL TRANSLATION
JACOB, AURELIEN MARC FLORENT
2021
Abstract
The scope of genome engineering in hematopoietic stem/progenitor cells (HSPCs) has broadened from random to precise genome insertions for treating genetic diseases of the blood lineages. Targeted editing of inherited mutant genes allows in situ correction and functional reconstitution with preserved expression control. We recently showed that both the induced double-strand DNA breaks and the AAV6 genome trigger a p53-dependent DNA damage response in HSPC delaying proliferation and decreasing hematopoietic reconstitution after xenotransplantation. Suppression of this response by transient expression of a dominant negative p53 released cell-cycle block and rescued hematopoietic reconstitution. Yet, the underlying biology remained unknown as well as the impact of gene editing on clonal dynamics of HDR-edited HSPC upon transplantation. Moreover, it has long been contended that the quiescence of primitive HSC constrains HDR-mediated gene editing, thus limiting its perspective clinical applications in several diseases. Here, we first overcame such constraints by transiently expressing the adenovirus 5 protein E4orf6/7, which operates the major cell cycle controller E2F, together with the nuclease. By global and targeted gene expression analysis we showed engagement of targeted cells in S/G2 phases with concomitant upregulation of all major components of the HDR machinery, thus increasing the efficiency of targeted transgene insertion. Combined E4orf6/7 expression and p53 inhibition enhanced >50% HDR efficiency within human graft surpassing the levels reported until now in the literature. Such outcome was reproducible across several HSPC donors and sources, genomic loci and conceivably portable to most types of editing platforms. In parallel, we devised a novel technology (BAR-seq) which enables clonal tracking of individual HDR-edited HSC by introducing a unique heritable barcode in the AAV6 template. Deep sequencing of integrated BARs in human hematochimeric mice showed that only few (5-10) dominant clones of edited HSC robustly contributed to the hematopoietic graft long-term after transplant. Transient p53 inhibition during editing enabled substantial increase in polyclonal graft composition without altering individual HSC output, thus explaining the improved engraftment and highlighting the p53-mediated response as culprit of an otherwise oligoclonal hematopoiesis. Importantly, BAR-seq provided the first direct evidence that human HDR-edited HSC maintain multilineage potential and undergo multiple rounds of symmetric and asymmetric divisions in primary and secondary xenogeneic hosts. Altogether, we expect that the substantial gains obtained in HDR efficiency and polyclonal repopulation by our improved editing protocol should broaden applicability of HSC gene editing and pave its way to clinical translation.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_835522.pdf
accesso aperto
Descrizione: Tesi di Jacob Aurelien Marc Florent - 835522
Tipologia di allegato:
Doctoral thesis
Dimensione
19.74 MB
Formato
Adobe PDF
|
19.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.