Dynamic Bayesian networks have been well explored in the literature as discrete-time models; however, their continuous-time extensions have seen comparatively little attention. In this paper, we propose the first constraint-based algorithm for learning the structure of continuous-time Bayesian networks. We discuss the different statistical tests and the underlying hypotheses used by our proposal to establish conditional independence. Finally, we validate its performance using synthetic data, and discuss its strengths and limitations. We find that score-based is more accurate in learning networks with binary variables, while our constraint-based approach is more accurate with variables assuming more than two values. However, more experiments are needed for confirmation.
Bregoli, A., Scutari, M., Stella, F. (2020). Constraint-Based Learning for Continuous-Time Bayesian Networks. In 10th International Conference on Probabilistic Graphical Models, PGM 2020 (pp.41-52). ML Research Press.
Constraint-Based Learning for Continuous-Time Bayesian Networks
Bregoli, A;Stella, F
2020
Abstract
Dynamic Bayesian networks have been well explored in the literature as discrete-time models; however, their continuous-time extensions have seen comparatively little attention. In this paper, we propose the first constraint-based algorithm for learning the structure of continuous-time Bayesian networks. We discuss the different statistical tests and the underlying hypotheses used by our proposal to establish conditional independence. Finally, we validate its performance using synthetic data, and discuss its strengths and limitations. We find that score-based is more accurate in learning networks with binary variables, while our constraint-based approach is more accurate with variables assuming more than two values. However, more experiments are needed for confirmation.File | Dimensione | Formato | |
---|---|---|---|
Bregoli-2020-PGM2020-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
313.73 kB
Formato
Adobe PDF
|
313.73 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.