High-entropy oxides based on transition metals, such as Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O (TM-HEO), have recently drawn special attention as potential anodes in lithium-ion batteries due to high specific capacity and cycling reversibility. However, the lithiation/delithiation mechanism of such systems is still controversial and not clearly addressed. Here, we report on an operando XAS investigation into TM-HEO-based anodes for lithium-ion cells during the first lithiation/delithiation cycle. This material showed a high specific capacity exceeding 600 mAh g-1 at 0.1 C and Coulombic efficiency very close to unity. The combination of functional and advanced spectroscopic studies revealed complex charging mechanisms, developing through the reduction of transition-metal (TM) cations, which triggers the conversion reaction below 1.0 V. The conversion is irreversible and incomplete, leading to the final collapse of the HEO rock-salt structure. Other redox processes are therefore discussed and called to account for the observed cycling behavior of the TM-HEO-based anode. Despite the irreversible phenomena, the HEO cubic structure remains intact for ∼60% of lithiation capacity, so proving the beneficial role of the configuration entropy in enhancing the stability of the HEO rock-salt structure during the redox phenomena.

Ghigna, P., Airoldi, L., Fracchia, M., Callegari, D., Anselmi-Tamburini, U., D'Angelo, P., et al. (2020). Lithiation Mechanism in High-Entropy Oxides as Anode Materials for Li-Ion Batteries: An Operando XAS Study. ACS APPLIED MATERIALS & INTERFACES, 12(45), 50344-50354 [10.1021/acsami.0c13161].

Lithiation Mechanism in High-Entropy Oxides as Anode Materials for Li-Ion Batteries: An Operando XAS Study

Pianta N.;Ruffo R.;
2020

Abstract

High-entropy oxides based on transition metals, such as Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O (TM-HEO), have recently drawn special attention as potential anodes in lithium-ion batteries due to high specific capacity and cycling reversibility. However, the lithiation/delithiation mechanism of such systems is still controversial and not clearly addressed. Here, we report on an operando XAS investigation into TM-HEO-based anodes for lithium-ion cells during the first lithiation/delithiation cycle. This material showed a high specific capacity exceeding 600 mAh g-1 at 0.1 C and Coulombic efficiency very close to unity. The combination of functional and advanced spectroscopic studies revealed complex charging mechanisms, developing through the reduction of transition-metal (TM) cations, which triggers the conversion reaction below 1.0 V. The conversion is irreversible and incomplete, leading to the final collapse of the HEO rock-salt structure. Other redox processes are therefore discussed and called to account for the observed cycling behavior of the TM-HEO-based anode. Despite the irreversible phenomena, the HEO cubic structure remains intact for ∼60% of lithiation capacity, so proving the beneficial role of the configuration entropy in enhancing the stability of the HEO rock-salt structure during the redox phenomena.
Articolo in rivista - Articolo scientifico
anodes; high-entropy oxides; lithiation mechanism; lithium-ion batteries; operando XAS;
English
30-ott-2020
2020
12
45
50344
50354
open
Ghigna, P., Airoldi, L., Fracchia, M., Callegari, D., Anselmi-Tamburini, U., D'Angelo, P., et al. (2020). Lithiation Mechanism in High-Entropy Oxides as Anode Materials for Li-Ion Batteries: An Operando XAS Study. ACS APPLIED MATERIALS & INTERFACES, 12(45), 50344-50354 [10.1021/acsami.0c13161].
File in questo prodotto:
File Dimensione Formato  
10281-301095_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 4.11 MB
Formato Adobe PDF
4.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/301095
Citazioni
  • Scopus 109
  • ???jsp.display-item.citation.isi??? 102
Social impact