Let p be a prime. We show that if a pro-p group with at most 2 defining relations has quadratic F_p-cohomology, then such algebra is universally Koszul. This proves the "Universal Koszulity Conjecture" formulated by J. Mináč et al. in the case of maximal pro-p Galois groups of fields with at most 2 defining relations.
Quadrelli, C. (2021). Pro-p groups with few relations and Universal Koszulity. MATHEMATICA SCANDINAVICA, 127(1), 28-42 [10.7146/math.scand.a-123644].
Pro-p groups with few relations and Universal Koszulity
Quadrelli, C.
2021
Abstract
Let p be a prime. We show that if a pro-p group with at most 2 defining relations has quadratic F_p-cohomology, then such algebra is universally Koszul. This proves the "Universal Koszulity Conjecture" formulated by J. Mináč et al. in the case of maximal pro-p Galois groups of fields with at most 2 defining relations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2rel_arxiv.pdf
accesso aperto
Descrizione: Articolo principale archiviato su arXiv
Tipologia di allegato:
Submitted Version (Pre-print)
Dimensione
362.99 kB
Formato
Adobe PDF
|
362.99 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.