Evidence suggests that the posterior cerebellum is involved in emotional processing. Specific mechanisms by which the cerebellum contributes to the perception of and reaction to the emotional state of others are not well-known. It is likely that perceived emotions trigger anticipatory/preparatory motor changes. However, the extent to which the cerebellum modulates the activity of the motor cortex to contribute to emotional processing has not been directly investigated. In this study, we assessed whether the activity of the posterior cerebellum influences the modulation of motor cortical excitability in response to emotional stimuli. To this end, we transiently disrupted the neural activity of the left posterior cerebellum using 1 Hz repetitive transcranial magnetic stimulation (rTMS) and examined its effect on motor cortical excitability witnessed during emotional face processing (in comparison to the effects of sham rTMS). Motor excitability was measured as TMS-based motor evoked potentials (MEPs) recorded from bilateral first dorsal interosseous (FDI) muscles during the viewing of negative emotional (i.e. fearful) and neutral facial expressions. In line with previous evidence, we found that MEP amplitude was increased during the viewing of fearful compared to neutral faces. Critically, when left posterior cerebellar activity was transiently inhibited with 1 Hz rTMS, we observed a reduction in amplitude of MEPs recorded from the contralateral (right) motor cortex during the viewing of emotional (but not neutral) faces. In turn, inhibition of the left posterior cerebellum did not affect the amplitude of MEPs recorded from the ipsilateral motor cortex. Our findings suggest that the posterolateral (left) cerebellum modulates motor cortical response to negative emotional stimuli and may serve as an interface between limbic, cognitive, and motor systems.
Ferrari, C., Fiori, F., Suchan, B., Plow, E., Cattaneo, Z. (2021). TMS over the posterior cerebellum modulates motor cortical excitability in response to facial emotional expressions. EUROPEAN JOURNAL OF NEUROSCIENCE, 53(4), 1029-1039 [10.1111/ejn.14953].
TMS over the posterior cerebellum modulates motor cortical excitability in response to facial emotional expressions
Ferrari C.;Fiori F.;Cattaneo Z.
2021
Abstract
Evidence suggests that the posterior cerebellum is involved in emotional processing. Specific mechanisms by which the cerebellum contributes to the perception of and reaction to the emotional state of others are not well-known. It is likely that perceived emotions trigger anticipatory/preparatory motor changes. However, the extent to which the cerebellum modulates the activity of the motor cortex to contribute to emotional processing has not been directly investigated. In this study, we assessed whether the activity of the posterior cerebellum influences the modulation of motor cortical excitability in response to emotional stimuli. To this end, we transiently disrupted the neural activity of the left posterior cerebellum using 1 Hz repetitive transcranial magnetic stimulation (rTMS) and examined its effect on motor cortical excitability witnessed during emotional face processing (in comparison to the effects of sham rTMS). Motor excitability was measured as TMS-based motor evoked potentials (MEPs) recorded from bilateral first dorsal interosseous (FDI) muscles during the viewing of negative emotional (i.e. fearful) and neutral facial expressions. In line with previous evidence, we found that MEP amplitude was increased during the viewing of fearful compared to neutral faces. Critically, when left posterior cerebellar activity was transiently inhibited with 1 Hz rTMS, we observed a reduction in amplitude of MEPs recorded from the contralateral (right) motor cortex during the viewing of emotional (but not neutral) faces. In turn, inhibition of the left posterior cerebellum did not affect the amplitude of MEPs recorded from the ipsilateral motor cortex. Our findings suggest that the posterolateral (left) cerebellum modulates motor cortical response to negative emotional stimuli and may serve as an interface between limbic, cognitive, and motor systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.