We compare three different ways of checking the Jacobi identity for weakly nonlocal Poisson brackets using the theory of distributions, pseudo-differential operators, and Poisson vertex algebras, respectively. We show that the three approaches lead to similar computations and same results.

Casati, M., Lorenzoni, P., Vitolo, R. (2020). Three computational approaches to weakly nonlocal Poisson brackets. STUDIES IN APPLIED MATHEMATICS, 144(4), 412-448 [10.1111/sapm.12302].

Three computational approaches to weakly nonlocal Poisson brackets

Lorenzoni P.;
2020

Abstract

We compare three different ways of checking the Jacobi identity for weakly nonlocal Poisson brackets using the theory of distributions, pseudo-differential operators, and Poisson vertex algebras, respectively. We show that the three approaches lead to similar computations and same results.
Articolo in rivista - Articolo scientifico
mathematical physics; partial differential equations; solitons and integrable systems
English
20-feb-2020
2020
144
4
412
448
none
Casati, M., Lorenzoni, P., Vitolo, R. (2020). Three computational approaches to weakly nonlocal Poisson brackets. STUDIES IN APPLIED MATHEMATICS, 144(4), 412-448 [10.1111/sapm.12302].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/295860
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
Social impact