Let p be a prime number and let K be a field containing a root of 1 of order p. If the absolute Galois group G_K satisfies dim H^1(G_K, F_p) < ∞ and dim H^2(G_K ,F_p) = 1, we show that L. Positselski’s and T. Weigel’s Koszulity conjectures are true for K. Also, under the above hypothesis we show that the F_p -cohomology algebra of G_K is the quadratic dual of the graded algebra gr_*F_p[G_K], induced by the powers of the augmentation ideal of the group algebra F_p[G_K], and these two algebras decompose as products of elementary quadratic algebras. Finally, we propose a refinement of the Koszulity conjectures, analogous to I. Efrat’s Elementary Type Conjecture.

Quadrelli, C. (2021). One-relator maximal pro-p Galois groups and the Koszulity conjectures. QUARTERLY JOURNAL OF MATHEMATICS, 72(3), 835-854 [10.1093/qmath/haaa049].

One-relator maximal pro-p Galois groups and the Koszulity conjectures

Quadrelli, C
2021

Abstract

Let p be a prime number and let K be a field containing a root of 1 of order p. If the absolute Galois group G_K satisfies dim H^1(G_K, F_p) < ∞ and dim H^2(G_K ,F_p) = 1, we show that L. Positselski’s and T. Weigel’s Koszulity conjectures are true for K. Also, under the above hypothesis we show that the F_p -cohomology algebra of G_K is the quadratic dual of the graded algebra gr_*F_p[G_K], induced by the powers of the augmentation ideal of the group algebra F_p[G_K], and these two algebras decompose as products of elementary quadratic algebras. Finally, we propose a refinement of the Koszulity conjectures, analogous to I. Efrat’s Elementary Type Conjecture.
Articolo in rivista - Articolo scientifico
Galois cohomology, Koszul algebras, absolute Galois groups, one-relator pro-p groups, quadratic algebras, Demushkin groups.
English
28-nov-2020
2021
72
3
835
854
open
Quadrelli, C. (2021). One-relator maximal pro-p Galois groups and the Koszulity conjectures. QUARTERLY JOURNAL OF MATHEMATICS, 72(3), 835-854 [10.1093/qmath/haaa049].
File in questo prodotto:
File Dimensione Formato  
1601.04480.pdf

accesso aperto

Descrizione: Versione pubblicata su arxiv
Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 301.87 kB
Formato Adobe PDF
301.87 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/295852
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
Social impact