We consider dynamic risk measures induced by backward stochastic differential equations (BSDEs) in an enlargement of filtration setting. On a fixed probability space, we are given a standard Brownian motion and a pair of random variables $( au, zeta) in (0,+infty) imes E$, with $E subset mathbb{R}^m$, that enlarge the reference filtration, i.e., the one generated by the Brownian motion. These random variables can be interpreted financially as a default time and an associated mark. After introducing a BSDE driven by the Brownian motion and the random measure associated to $( au, zeta)$, we define the dynamic risk measure $( ho_t)_{t in [0,T]}$, for a fixed time $T > 0$, induced by its solution. We prove that $( ho_t)_{t in [0,T]}$ can be decomposed in a pair of risk measures, acting before and after $ au$, and we characterize its properties giving suitable assumptions on the driver of the BSDE. Furthermore, we prove an inequality satisfied by the penalty term associated to the robust representation of $( ho_t)_{t in [0,T]}$ and we discuss the dynamic entropic risk measure case, providing examples where it is possible to write explicitly its decomposition and simulate it numerically.

Calvia, A., Rosazza Gianin, E. (2020). Risk Measures and Progressive Enlargement of Filtration: A BSDE Approach. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 11(3), 815-848 [10.1137/19M1259134].

Risk Measures and Progressive Enlargement of Filtration: A BSDE Approach

Calvia, A
;
Rosazza Gianin, E
2020

Abstract

We consider dynamic risk measures induced by backward stochastic differential equations (BSDEs) in an enlargement of filtration setting. On a fixed probability space, we are given a standard Brownian motion and a pair of random variables $( au, zeta) in (0,+infty) imes E$, with $E subset mathbb{R}^m$, that enlarge the reference filtration, i.e., the one generated by the Brownian motion. These random variables can be interpreted financially as a default time and an associated mark. After introducing a BSDE driven by the Brownian motion and the random measure associated to $( au, zeta)$, we define the dynamic risk measure $( ho_t)_{t in [0,T]}$, for a fixed time $T > 0$, induced by its solution. We prove that $( ho_t)_{t in [0,T]}$ can be decomposed in a pair of risk measures, acting before and after $ au$, and we characterize its properties giving suitable assumptions on the driver of the BSDE. Furthermore, we prove an inequality satisfied by the penalty term associated to the robust representation of $( ho_t)_{t in [0,T]}$ and we discuss the dynamic entropic risk measure case, providing examples where it is possible to write explicitly its decomposition and simulate it numerically.
Articolo in rivista - Articolo scientifico
risk measures, g-expectations, BSDEs, enlargement of filtration
English
31-ago-2020
2020
11
3
815
848
none
Calvia, A., Rosazza Gianin, E. (2020). Risk Measures and Progressive Enlargement of Filtration: A BSDE Approach. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 11(3), 815-848 [10.1137/19M1259134].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/293536
Citazioni
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
Social impact