A QM/MM investigation of the active-ready (Hox) form of [FeFe]-hydrogenase from D. desulfuricans, in which the electronic properties of all Fe-S clusters (H, F and F') have been simultaneously described using DFT, was carried out with the aim of disclosing a possible interplay between the H-cluster and the accessory iron-sulfur clusters in the initial steps of the catalytic process leading to H2 formation. It turned out that one-electron addition to the active-ready form leads to reduction of the F'-cluster and not of the H-cluster. Protonation of the H-cluster in H ox is unlikely, and in any case it would not trigger electron transfer from the accessory Fe4S4 clusters to the active site. Instead, one-electron reduction and protonation of the active-ready form trigger electron transfer within the protein, a key event in the catalytic cycle. In particular, protonation of the H-cluster after one-electron reduction of the enzyme lowers the energy of the lowest unoccupied molecular orbitals localized on the H-cluster to such an extent that a long-range electron transfer from the F'-cluster towards the H-cluster itself is allowed. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Greco, C., Bruschi, M., Fantucci, P., Ryde, U., DE GIOIA, L. (2011). Probing the Effects of One-Electron Reduction and Protonation on the Electronic Properties of the Fe-S Clusters in the Active-Ready Form of [FeFe]-Hydrogenases. A QM/MM Investigation. CHEMPHYSCHEM, 12(17), 3376-3382 [10.1002/cphc.201100498].

Probing the Effects of One-Electron Reduction and Protonation on the Electronic Properties of the Fe-S Clusters in the Active-Ready Form of [FeFe]-Hydrogenases. A QM/MM Investigation

GRECO, CLAUDIO;BRUSCHI, MAURIZIO;FANTUCCI, PIERCARLO;DE GIOIA, LUCA
2011

Abstract

A QM/MM investigation of the active-ready (Hox) form of [FeFe]-hydrogenase from D. desulfuricans, in which the electronic properties of all Fe-S clusters (H, F and F') have been simultaneously described using DFT, was carried out with the aim of disclosing a possible interplay between the H-cluster and the accessory iron-sulfur clusters in the initial steps of the catalytic process leading to H2 formation. It turned out that one-electron addition to the active-ready form leads to reduction of the F'-cluster and not of the H-cluster. Protonation of the H-cluster in H ox is unlikely, and in any case it would not trigger electron transfer from the accessory Fe4S4 clusters to the active site. Instead, one-electron reduction and protonation of the active-ready form trigger electron transfer within the protein, a key event in the catalytic cycle. In particular, protonation of the H-cluster after one-electron reduction of the enzyme lowers the energy of the lowest unoccupied molecular orbitals localized on the H-cluster to such an extent that a long-range electron transfer from the F'-cluster towards the H-cluster itself is allowed. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Articolo in rivista - Articolo scientifico
bioinorganic chemistry; density functional calculations; electronic structures; enzyme catalysis; metalloenzymes
English
2011
12
17
3376
3382
none
Greco, C., Bruschi, M., Fantucci, P., Ryde, U., DE GIOIA, L. (2011). Probing the Effects of One-Electron Reduction and Protonation on the Electronic Properties of the Fe-S Clusters in the Active-Ready Form of [FeFe]-Hydrogenases. A QM/MM Investigation. CHEMPHYSCHEM, 12(17), 3376-3382 [10.1002/cphc.201100498].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/28602
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
Social impact