Let (M, ρ, μ) be a space of homogeneous type and denote by FcC(M) the space of finite linear combinations of continuous (1, ∞)-atoms with compact support. In this note we give a simple function theoretic proof of the equivalence on FcC(M) of the H1-norm and the norm defined in terms of finite linear combinations of atoms. The result holds also for the class of nondoubling metric measure spaces considered in previous works of the authors and Carbonaro. © 2010 Springer-Verlag.

Mauceri, G., Meda, S. (2011). Equivalence of norms on finite linear combinations of atoms. MATHEMATISCHE ZEITSCHRIFT, 269(1/2), 253-260 [10.1007/s00209-010-0725-2].

Equivalence of norms on finite linear combinations of atoms

MEDA, STEFANO
2011

Abstract

Let (M, ρ, μ) be a space of homogeneous type and denote by FcC(M) the space of finite linear combinations of continuous (1, ∞)-atoms with compact support. In this note we give a simple function theoretic proof of the equivalence on FcC(M) of the H1-norm and the norm defined in terms of finite linear combinations of atoms. The result holds also for the class of nondoubling metric measure spaces considered in previous works of the authors and Carbonaro. © 2010 Springer-Verlag.
Articolo in rivista - Articolo scientifico
Hardy spaces, finite combination of atoms, equivalence of norm
English
2011
269
1/2
253
260
none
Mauceri, G., Meda, S. (2011). Equivalence of norms on finite linear combinations of atoms. MATHEMATISCHE ZEITSCHRIFT, 269(1/2), 253-260 [10.1007/s00209-010-0725-2].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/28564
Citazioni
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
Social impact