This work is devoted to the Dirichlet problem for the equation -δ u = λu +|x|α|u|2*-2 u in the unit ball of ℝN. We assume that λ is bigger than the first eigenvalues of the laplacian, and we prove that there exists a solution provided a is small enough. This solution has a variational characterization as a ground state.

Secchi, S. (2012). The Brezis-Nirenberg Problem for the Henon Equation: Ground State Solutions. ADVANCED NONLINEAR STUDIES, 12(2), 383-394 [10.1515/ans-2012-0209].

The Brezis-Nirenberg Problem for the Henon Equation: Ground State Solutions

Secchi, S
2012

Abstract

This work is devoted to the Dirichlet problem for the equation -δ u = λu +|x|α|u|2*-2 u in the unit ball of ℝN. We assume that λ is bigger than the first eigenvalues of the laplacian, and we prove that there exists a solution provided a is small enough. This solution has a variational characterization as a ground state.
Articolo in rivista - Articolo scientifico
Critical exponent; Ground states; Hénon equation; Nehari manifold;
English
2012
12
2
383
394
reserved
Secchi, S. (2012). The Brezis-Nirenberg Problem for the Henon Equation: Ground State Solutions. ADVANCED NONLINEAR STUDIES, 12(2), 383-394 [10.1515/ans-2012-0209].
File in questo prodotto:
File Dimensione Formato  
1201.3736v1.pdf

Solo gestori archivio

Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 209.15 kB
Formato Adobe PDF
209.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/28503
Citazioni
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
Social impact