Let be a discrete field and (V, φ) a pair consisting of a locally linearly compact space V and a continuous endomorphism φ: V → V. We provide the formulae to compute the topological entropy ent∗ of the flow (V, φ) subject to either extension or restriction of scalars.

Castellano, I. (2020). Topological entropy for locally linearly compact vector spaces and field extensions. TOPOLOGICAL ALGEBRA AND ITS APPLICATIONS, 8(1), 58-66 [10.1515/taa-2020-0005].

Topological entropy for locally linearly compact vector spaces and field extensions

Castellano, Ilaria
Primo
2020

Abstract

Let be a discrete field and (V, φ) a pair consisting of a locally linearly compact space V and a continuous endomorphism φ: V → V. We provide the formulae to compute the topological entropy ent∗ of the flow (V, φ) subject to either extension or restriction of scalars.
Articolo in rivista - Articolo scientifico
algebraic dynamical system; continuous endomorphism; extension; linearly compact vector space; locally linearly compact vector space; restriction; topological entropy;
English
2020
8
1
58
66
open
Castellano, I. (2020). Topological entropy for locally linearly compact vector spaces and field extensions. TOPOLOGICAL ALGEBRA AND ITS APPLICATIONS, 8(1), 58-66 [10.1515/taa-2020-0005].
File in questo prodotto:
File Dimensione Formato  
%5B22993231%20-%20Topological%20Algebra%20and%20its%20Applications%5D%20Topological%20entropy%20for%20locally%20linearly%20compact%20vector%20spaces%20and%20field%20extensions.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 389.28 kB
Formato Adobe PDF
389.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/284986
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
Social impact