We deal with non negative functions which are s-harmonic on a given cone of the n-dimensional Euclidean space with vertex at zero, vanishing on the complementary. We consider the case when the parameter s approaches 1, wondering whether solutions of the problem do converge to harmonic functions in the same cone or not. Surprisingly, the answer will depend on the opening of the cone through an auxiliary eigenvalue problem on the upper half sphere. These conic functions are involved in the study of the nodal regions in the case of optimal partitions and other free boundary problems and play a crucial role in the extension of the Alt-Caffarelli-Friedman monotonicity formula to the case of fractional diffusions.
Vita, S. (2019). On s-harmonic functions on cones funzioni s-armoniche su coni. Intervento presentato a: Bruno Pini Mathematical Analysis Seminar, Bologna, Italia [10.6092/issn.2240-2829/10366].
On s-harmonic functions on cones funzioni s-armoniche su coni
Vita, S
2019
Abstract
We deal with non negative functions which are s-harmonic on a given cone of the n-dimensional Euclidean space with vertex at zero, vanishing on the complementary. We consider the case when the parameter s approaches 1, wondering whether solutions of the problem do converge to harmonic functions in the same cone or not. Surprisingly, the answer will depend on the opening of the cone through an auxiliary eigenvalue problem on the upper half sphere. These conic functions are involved in the study of the nodal regions in the case of optimal partitions and other free boundary problems and play a crucial role in the extension of the Alt-Caffarelli-Friedman monotonicity formula to the case of fractional diffusions.File | Dimensione | Formato | |
---|---|---|---|
1_Vita.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
291.51 kB
Formato
Adobe PDF
|
291.51 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.