In the field of tyre, it is a common practice to use mineral oils, petroleum-derived, as plasticizers. The toxicity of their components, together with their diminishing availability and/or accessibility, is causing environmental and political concerns. Some vegetable oils, consisting of Triacylglycerols (TAG) mixture, have been successfully tested as alternative. Unfortunately, also these oils pose environmental, economic and social issues, as the starting material. The oleaginous yeasts, together with their capability to accumulate microbial oils, with a composition similar to vegetable oils, have different characteristics as: a) are able to accumulate oil up to 70% of their dry cell weight, under proper conditions; b) large-scale cultivation; b)use of residual biomasses, as cultivation and oil accumulation substrate; d)genetic tools available in order to modify the final oil composition, make them promising alternative for plasticizing oils production. In the first part of this work, it has been described the production of two different microbial oil, MICRO-OIL1 (MO1) e 2 (MO2), starting from two oleaginous yeasts R. toruloides and L. starkeyi, by fermentation using as substrate, for their growth and oil accumulation, a waste product of biodiesel production (crude glycerol). Then, the resulting oils have been tested in rubber compounds, butadiene-natural rubber based, to verify their effect on their properties. The oils, having different fatty acids compositions, allow to obtain static and dynamic properties similar to the reference mineral oil, MES, and better than the vegetable oils using as reference, giving, in addition lower rolling resistance thanks to the lower value of tanδ at 70°. In this part, it was also demonstrated as the presence in the MO1 of natural antioxidant, carotenoids, allows to the rubber compounds to maintain the static properties also after thermal aging, allowing to hypnotize a protective action of MO1. In the second part of this work, compatibility studies based on thermal analysis by Dynamic Scanning Calorimetry (DSC), carried out mixing the oils (MO1, MO2, AP-88 e MES) and two different elastomers, styrene-butadiene based, revealed the affinity between MO2 and the elastomer SLR3402, also confirmed by the static and dynamic properties of the rubber compound, that resulting similar to the reference oil, MES, and better than vegetable oil, AP-88. In the last part of this work, has been adopted a metabolic engineering approach to demonstrate the potential of these yeasts as plasticizer producers. To this purpose, the oleaginous yeast L. starkeyi has been engineered in order to redirect the fatty acids flux production. Then, two genes OLE1 and FAD2, encoding for two enzymes Δ9 e Δ12 desaturase, involved in the production of mono- (MUFAs) and polyunsaturated (PUFAs) fatty acids. The results showed as the combined overexpression led to a redistribution of fatty acids in favor of MUFAs inside the microbial oil, the MICRO-OIL4 (MO4), also tested in rubber compound SLR3402-based. The compound showed static and dynamic properties similar to MES, a better tensile strength value compared to AP-88, as well as a reduction of tanδ at 70°, that led to lower rolling resistance. The good performance obtained by microbial oil incorporation in rubber compounds, suggesting as they can be used as potential plasticizing to replace the traditional oils used in tyre field.

Nel settore degli pneumatici, comunemente vengono utilizzati oli minerali, derivanti dal petrolio, come plastificanti. La tossicità delle loro componenti, insieme alla diminuzione della loro disponibilità e accessibilità, sta causando problemi ambientali e politici. Alcuni oli vegetali, composti in generale da una miscela trigliceridi, sono stati testati con successo come alternativa. Sfortunatamente, anche questi oli pongono problemi ambientali, economici e sociali, come materiali di partenza. I lieviti oleaginosi, oltre ad essere capaci di accumulare oli con una composizione simile a quella degli oli vegetali, posseggono diverse caratteristiche: a)accumulo di oli fino al 70% del loro peso secco cellulare, in opportune condizioni di crescita; b) coltivazione su larga scala; c) utilizzo di biomasse residuali ,biomasse di seconda generazione, come substrato per la loro crescita e accumulo di oli; d) possibile utilizzo di tecniche di ingegnerizzazione per modulazione composizione finale degli oli, rendendoli una alternativa promettente per la produzione di oli plastificanti.Nella prima parte di questo lavoro, sono stati prodotti due diversi oli microbici, MICRO-OIL1 (MO1) e 2 (MO2), a partire da due lieviti oleaginosi R. toruloides e L. starkeyi, attraverso fermentazione utilizzando come substrato per la loro crescita ed accumulo un prodotto di scarto derivante dall’industria del biodiesel (glicerolo grezzo). In seguito, sono stati testati all’interno di mescole pneumatiche, a base di butadiene e gomma naturale, per verificare il loro effetto sulle proprietà. Tali oli, aventi diversa composizione in termini di acidi grassi, hanno permesso in generale di ottenere delle proprietà statiche e dinamiche molto simili al riferimento minerale, MES, e migliori rispetto agli oli vegetali utilizzati come riferimento, conferendo inoltre bassa resistenza al rotolamento, attribuibile alla riduzione dei valori di tanδ alla temperatura di 70°. In questa parte, è stato inoltre dimostrato come la presenza degli antiossidanti naturali, carotenoidi, all’interno del MO1, sia in grado di far mantenere le proprietà statiche alle mescole pneumatiche anche dopo invecchiamento termico, suggeriscono un’attività protettiva del MO1.Nella seconda parte del lavoro, studi di compatibilità basati su analisi termica con Dynamic Scanning Calorimetry (DSC), effettuati miscelando gli oli (MO1, MO2, AP-88 e MES) e due diversi elastomeri a base di stirene-butadiene, hanno rivelato l’affinità tra il MO2 e l’elastomero SLR3402, confermata anche in mescola pneumatica, da proprietà statiche e dinamiche simili al riferimento, MES, e migliori rispetto al riferimento vegetale, AP-88.Nell’ultima parte di questo lavoro, è stato adottato un approccio di ingegneria metabolica, con il fine di dimostrare il potenziale di tali lieviti come produttori di oli plastificanti. Con questo intento sono state condotte sul lievito oleaginoso L. starkeyi ingegnerizzazioni geniche mirate a ridirezionare il flusso degli acidi grassi prodotti. A tale scopo, sono stati overespressi i geni OLE1 e FAD2, codificanti rispettivamente per la Δ9 e Δ12 desaturasi, coinvolti principalmente nella produzione di acidi grassi monoinsaturi (MUFAs) e poliinsaturi (PUFAs). I risultati ottenuti hanno mostrato come la combinata overespressione conduca verso una ridistribuzione degli acidi grassi in favore dei MUFAs all’interno dell’olio microbico, MICRO-OIL4 (MO4), in seguito, anche testato in mescole pneumatiche a base di SLR3402. Sono state ottenute proprietà statiche e dinamiche simili al riferimento MES, con carico a rottura migliore rispetto ad AP-88, e riduzione dei valori di tanδ a 70° indicando una bassa resistenza al rotolamento. In conclusione, le buone performance osservate da incorporazione di oli microbici in mescole pneumatiche, suggeriscono come essi possano utilizzati come potenziali plastificanti per rimpiazzare i tradizionali oli del settore pneumatico.

(2020). Tailored Bioplasticizer for elastomeric compounds from sustainable biomass. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2020).

Tailored Bioplasticizer for elastomeric compounds from sustainable biomass

DI LORENZO, RAFFAELLA DESIRÈ
2020

Abstract

In the field of tyre, it is a common practice to use mineral oils, petroleum-derived, as plasticizers. The toxicity of their components, together with their diminishing availability and/or accessibility, is causing environmental and political concerns. Some vegetable oils, consisting of Triacylglycerols (TAG) mixture, have been successfully tested as alternative. Unfortunately, also these oils pose environmental, economic and social issues, as the starting material. The oleaginous yeasts, together with their capability to accumulate microbial oils, with a composition similar to vegetable oils, have different characteristics as: a) are able to accumulate oil up to 70% of their dry cell weight, under proper conditions; b) large-scale cultivation; b)use of residual biomasses, as cultivation and oil accumulation substrate; d)genetic tools available in order to modify the final oil composition, make them promising alternative for plasticizing oils production. In the first part of this work, it has been described the production of two different microbial oil, MICRO-OIL1 (MO1) e 2 (MO2), starting from two oleaginous yeasts R. toruloides and L. starkeyi, by fermentation using as substrate, for their growth and oil accumulation, a waste product of biodiesel production (crude glycerol). Then, the resulting oils have been tested in rubber compounds, butadiene-natural rubber based, to verify their effect on their properties. The oils, having different fatty acids compositions, allow to obtain static and dynamic properties similar to the reference mineral oil, MES, and better than the vegetable oils using as reference, giving, in addition lower rolling resistance thanks to the lower value of tanδ at 70°. In this part, it was also demonstrated as the presence in the MO1 of natural antioxidant, carotenoids, allows to the rubber compounds to maintain the static properties also after thermal aging, allowing to hypnotize a protective action of MO1. In the second part of this work, compatibility studies based on thermal analysis by Dynamic Scanning Calorimetry (DSC), carried out mixing the oils (MO1, MO2, AP-88 e MES) and two different elastomers, styrene-butadiene based, revealed the affinity between MO2 and the elastomer SLR3402, also confirmed by the static and dynamic properties of the rubber compound, that resulting similar to the reference oil, MES, and better than vegetable oil, AP-88. In the last part of this work, has been adopted a metabolic engineering approach to demonstrate the potential of these yeasts as plasticizer producers. To this purpose, the oleaginous yeast L. starkeyi has been engineered in order to redirect the fatty acids flux production. Then, two genes OLE1 and FAD2, encoding for two enzymes Δ9 e Δ12 desaturase, involved in the production of mono- (MUFAs) and polyunsaturated (PUFAs) fatty acids. The results showed as the combined overexpression led to a redistribution of fatty acids in favor of MUFAs inside the microbial oil, the MICRO-OIL4 (MO4), also tested in rubber compound SLR3402-based. The compound showed static and dynamic properties similar to MES, a better tensile strength value compared to AP-88, as well as a reduction of tanδ at 70°, that led to lower rolling resistance. The good performance obtained by microbial oil incorporation in rubber compounds, suggesting as they can be used as potential plasticizing to replace the traditional oils used in tyre field.
BRANDUARDI, PAOLA
DI CREDICO, BARBARA
plastificante; lievito oleaginoso; olio microbico; MUFAs; rolling resistence
plasticizer; oleaginous yeast; microbial oil; MUFAs; rolling resistence
ING-IND/22 - SCIENZA E TECNOLOGIA DEI MATERIALI
English
8-lug-2020
SCIENZA E NANOTECNOLOGIA DEI MATERIALI
32
2018/2019
open
(2020). Tailored Bioplasticizer for elastomeric compounds from sustainable biomass. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2020).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_823954.pdf

Accesso Aperto

Descrizione: Tesi
Tipologia di allegato: Doctoral thesis
Dimensione 3.56 MB
Formato Adobe PDF
3.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/278864
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact