A convincing observation of neutrino-less double beta decay (0vDBD) relies on the possibility of operating high-energy resolution detectors in background-free conditions. Scintillating cryogenic calorimeters are one of the most promising tools to fulfill the requirements for a next-generation experiment. Several steps have been taken to demonstrate the maturity of this technique, starting form the successful experience of CUPID-0. The CUPID-0 experiment collected almost 10 kg y of exposure, running 26 Zn82Se crystals during two years of continuous detector operation. The complete rejection of the dominant α background was demonstrated, measuring the lowest counting rate in the region of interest for this technique. Furthermore, the most stringent limit on the 82Se 0vDBD was established. In this contribution we present the final results of CUPID-0 phase-I, including a detailed model of the background and the measurement of the 2vDBD half-life.
Casali, N., Azzolini, O., Beeman, J., Bellini, F., Beretta, M., Biassoni, M., et al. (2020). Final results of the CUPID-0 Phase i experiment. In Journal of Physics: Conference Series. Institute of Physics Publishing [10.1088/1742-6596/1468/1/012205].
Final results of the CUPID-0 Phase i experiment
Beretta M.;Biassoni M.;Brofferio C.;Bucci C.;Capelli S.;Carniti P.;Chiesa D.;Clemenza M.;Cremonesi O.;Gironi L.;Giuliani A.;Gorla P.;Gotti C.;Nastasi M.;Nones C.;Orlandi D.;Pagnanini L.;Pattavina L.;Pavan M.;Pessina G.;Pozzi S.;Previtali E.;Puiu A.;Vignati M.;
2020
Abstract
A convincing observation of neutrino-less double beta decay (0vDBD) relies on the possibility of operating high-energy resolution detectors in background-free conditions. Scintillating cryogenic calorimeters are one of the most promising tools to fulfill the requirements for a next-generation experiment. Several steps have been taken to demonstrate the maturity of this technique, starting form the successful experience of CUPID-0. The CUPID-0 experiment collected almost 10 kg y of exposure, running 26 Zn82Se crystals during two years of continuous detector operation. The complete rejection of the dominant α background was demonstrated, measuring the lowest counting rate in the region of interest for this technique. Furthermore, the most stringent limit on the 82Se 0vDBD was established. In this contribution we present the final results of CUPID-0 phase-I, including a detailed model of the background and the measurement of the 2vDBD half-life.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.