Metamorphic rocks are the records of plate tectonic processes whose reconstruction relies on correct estimates of the pressures and temperatures (P-T) experienced by these rocks through time. Unlike chemical geothermobarometry, elastic geobarometry does not rely on chemical equilibrium between minerals, so it has the potential to provide information on overstepping of reaction boundaries and to identify other examples of non-equilibrium behavior in rocks. Here we introduce a method that exploits the anisotropy in elastic properties of minerals to determine the unique P and T of entrapment from a single inclusion in a mineral host. We apply it to preserved quartz inclusions in garnet from eclogite xenoliths hosted in Yakutian kimberlites (Russia). Our results demonstrate that quartz trapped in garnet can be preserved when the rock reaches the stability field of coesite (the high-pressure and hightemperature polymorph of quartz) at 3 GPa and 850 °C. This supports a metamorphic origin for these xenoliths and sheds light on the mechanisms of craton accretion from a subducted crustal protolith. Furthermore, we show that interpreting P and T conditions reached by a rock from the simple phase identification of key inclusion minerals can be misleading.

Alvaro, M., Mazzucchelli, M., Angel, R., Murri, M., Campomenosi, N., Scambelluri, M., et al. (2020). Fossil subduction recorded by quartz from the coesite stability field. GEOLOGY, 48(1), 24-28 [10.1130/G46617.1].

Fossil subduction recorded by quartz from the coesite stability field

Murri M.;
2020

Abstract

Metamorphic rocks are the records of plate tectonic processes whose reconstruction relies on correct estimates of the pressures and temperatures (P-T) experienced by these rocks through time. Unlike chemical geothermobarometry, elastic geobarometry does not rely on chemical equilibrium between minerals, so it has the potential to provide information on overstepping of reaction boundaries and to identify other examples of non-equilibrium behavior in rocks. Here we introduce a method that exploits the anisotropy in elastic properties of minerals to determine the unique P and T of entrapment from a single inclusion in a mineral host. We apply it to preserved quartz inclusions in garnet from eclogite xenoliths hosted in Yakutian kimberlites (Russia). Our results demonstrate that quartz trapped in garnet can be preserved when the rock reaches the stability field of coesite (the high-pressure and hightemperature polymorph of quartz) at 3 GPa and 850 °C. This supports a metamorphic origin for these xenoliths and sheds light on the mechanisms of craton accretion from a subducted crustal protolith. Furthermore, we show that interpreting P and T conditions reached by a rock from the simple phase identification of key inclusion minerals can be misleading.
Articolo in rivista - Articolo scientifico
elastic geobarometry, quartz
English
2020
48
1
24
28
none
Alvaro, M., Mazzucchelli, M., Angel, R., Murri, M., Campomenosi, N., Scambelluri, M., et al. (2020). Fossil subduction recorded by quartz from the coesite stability field. GEOLOGY, 48(1), 24-28 [10.1130/G46617.1].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/274545
Citazioni
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 61
Social impact