This paper contains an L^p improving result for convolution operators defined by singular measures associated to hypersurfaces on the motion group. This needs only mild geometric properties of the surfaces, and it extends earlier results on Radon type transforms on R^n. The proof relies on the harmonic analysis on the motion group

Brandolini, L., Gigante, G., Thangavelu, S., Travaglini, G. (2010). Convolution Operators Defined by Singular Measures on the Motion Group. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 59(6), 1935-1945 [10.1512/iumj.2010.59.4100].

Convolution Operators Defined by Singular Measures on the Motion Group

TRAVAGLINI, GIANCARLO
2010

Abstract

This paper contains an L^p improving result for convolution operators defined by singular measures associated to hypersurfaces on the motion group. This needs only mild geometric properties of the surfaces, and it extends earlier results on Radon type transforms on R^n. The proof relies on the harmonic analysis on the motion group
Articolo in rivista - Articolo scientifico
Radon transform; L^p improving; Motion group
English
2010
59
6
1935
1945
none
Brandolini, L., Gigante, G., Thangavelu, S., Travaglini, G. (2010). Convolution Operators Defined by Singular Measures on the Motion Group. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 59(6), 1935-1945 [10.1512/iumj.2010.59.4100].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/27448
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
Social impact