In the last few decades, the constant development of novel single molecule techniques has created the basis for a new paradigm in the field of biophysics. Among all, the nanomanipulation of individual biomolecules revealed new insights into the mechanics of biological molecules, in particular proteins and DNA, improving the understanding of the fundamental relation between structural properties and biological functions. Therefore, several single-molecule nanomanipulation methods have been developed, including Atomic Force Microscopy (AFM), Magnetic Tweezers (MT) and Flow Stretching (F-S) coupled with fluorescence. All these technique were employed in this Thesis for the characterisation of biological macromolecules by single molecule force spectroscopy (SMFS). In this Thesis I focus mainly on several aspects of a few different proteins trying to depict a frame in which the strong link between proteins function and their structure can be clarified. With this aim, I study the conformational states of an intrinsically disordered protein (IDP) involved in Parkinson's Disease, the a-synuclein (AS) and the structural change driving the DNA compaction mediated by structural maintenance protein, the condensin. Finally, I present a structural study of a DNA-analogue by thermal shifting essays and single molecule experiments. I included also a technical implementation of a (F-S) combined with TIRF set up to promote the high-speed exchanging buffer for study protein DNA interactions. In the AS single molecule force spectroscopy (SMFS) study, I afford the problem of AS lacking of well defined structure by stretching and unfolding a single polyprotein containing the human AS by employing a SMFS approach. The analysis of the different unfolding pathways gives information about the structural conformation of the protein before the mechanical denaturation. The AS was found to assume three distinct conformational states ranging from a random coil to a highly structured conformation. Since ligands, such as Epigallocatechin-3-Gallate (EGCG) and Dopamine (DA), are known to affect the fibrillation process of AS, I used this single molecule technique to investigate the effect of EGCG and DA on the conformational ensemble of the WT AS. Moreover, knowing from several studies that the presence of point mutations, linked to familial PD, correlate with the gaining of structure and therefore with AS aggregation, I SMFS studies also on AS with three different single point mutations (A30P, A53T and E83A). A particular emphasis was given to the comparison between SMFS results and native mass spectrometry data for the conformational changes of AS in the presence of both DA and EGCG. In the following part, related to the DAP: diaminopurine-substituted DNA, a systematic comparison between a wild-type DNA and DAP DNA is performed, in terms of thermal stability and nanomechanical properties, measured at low and high forces. At low forces the DNA extension and bending rigidity were investigated, by using both MT and AFM, while at high forces the overstretching transition behaviour was explored. In the section related to condensin mediated DNA collapsing, I present a single-molecule MT study to measure, in real-time, the compaction of individual DNA molecules by the condensin complex in the presence of ATP. Since many compaction traces showed sudden distinct decreases in the DNA end-to-end length, I present and validate two different very conservative user-bias-independent step-finding algorithm to extract the size of these compaction steps. Finally, a DNA flow stretching implementation is presented. Briefly, several flow cells were tested to achieve a fast buffer exchange in both MT and F-S coupled with TIRF, in the frame of visualisation of DNA:proteins interactions. We validated our flow cells in term of boundary exchange and applied force. We also visualized fluorescent DNA molecules stretched in the presence of several flow rates.

Negli ultimi decenni, lo sviluppo di nuove tecniche di singola molecola ha creato le basi per nuovi paradigmi nel campo della biofisica. In particolare, la nanomanipolazione di singole biomacromolecole ha permesso la caratterizzazione meccanica di proteine e DNA, cercando di evidenziare la relazione fondamentale tra struttura e funzione biologica. Nel corso degli anni sono stati sviluppati diversi metodi di nanomanipolazione: tra questi, il Microscopio a Forza Atomica (AFM), il Magnetic Tweezers (MT) e il Flow-Stretching (F-S) accoppiato a fluorescenza. Queste tre tecniche sono state utilizzate per la caratterizzazione di singole biomacromolecole con tecniche di spettroscopia di forza a livello di singola molecola (SMFS) in quattro diversi progetti. In questa Tesi mi sono occupata principalmente di caratterizzare strutturalmente diverse proteine e correlarne la conformazione alla funzione biologica. In questa ottica, sono state studiate le diverse conformazioni strutturali di una proteina intrinsecamente disordinata (IDP) coinvolta nella malattia del Parkison’s (PD), chiamata alfa-synucleina (AS) e il riarrangiamento strutturale di una proteina coinvolta nel mantenimento strutturale cromosomico, la condensina, durante la condensazione di singoli filamenti di DNA. Inoltre, è stata studiata la struttura di un DNA-analogo sia caratterizzandone la stabilità termica sia attraverso studi di nanomeccanica in SMFS. Infine, è stata descritta una implementazione tecnica di un apparato di F-S accoppiato con illuminazione TIRF, per ottenere una rapida sostituzione di soluzioni durante esperimenti di microfluidica, ottenendo un setup particolarmente indicato per studi di interazione tra DNA e proteine. Durante lo studio della proteina AS in SMFS, il problema della mancanza di una struttura secondaria ben definita è stato risolto con l’impego di una singola poliproteina, contenente un modulo di AS umana. Sono state caratterizzati tre diversi stati conformazionali per AS, da uno stato totalmente destrutturato a una conformazione altamente strutturata. I riarrangiamenti conformazionali di AS sono stati studiati anche in presenza di gallato epigallocatechina (EGCG) e dopamina (DA). Una particolare attenzione è stata quindi riservata al confronto tra i risultati ottenuti da tecniche di SMFS e quelli precedentemente ricavati da analisi di spettroscopia di massa. La proteina AS è stata caratterizzata anche in presenza di tre diverse mutazioni puntuali legate al PD (A30P, A53T e E83A). Nel secondo progetto, un analogo del DNA (DAP) è stato caratterizzato sia con metodi di stabilità termica che di nanomeccanica, studiando il comportamento del DAP-DNA in presenza di forze esterne. L’estensione e la rigidità delle due molecole di DNA (DAP e WT) sono state caratterizzate a basse forze (AFM e MT) e alte forze (MT), dove è stata descritta la transizione di overstretching. Nel terzo progetto è stato studiato l’effetto della condensina sulla condensazione di singoli filamenti di DNA. In particolare, è stato effettuato uno studio di singola molecola per seguire, in tempo reale, la riduzione di estensione di DNA in presenza di condensina e ATP. Considerato che la maggior parte delle curve sono caratterizzate da improvvisi e ben evidenti salti durante la condensazione, sono stati sviluppati e validati due diversi algoritmi per l’identificazione automatica dei gradini. Infine, diverse celle fluidiche sono state testate nell’apparato di F-S, nell’ottica di studi di interazione tra proteine e DNA. Queste celle sono state caratterizzate sia in termini di rapidità di scambio di flussi laminari che di forza capaci di generare sul campione. Sono stati infine visualizzate singole molecole di DNA fluorescenti in presenza di flussi di diversa portata.

(2020). Single molecule force spectroscopy of proteins and DNA. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2020).

Single molecule force spectroscopy of proteins and DNA

CORTI, ROBERTA
2020

Abstract

In the last few decades, the constant development of novel single molecule techniques has created the basis for a new paradigm in the field of biophysics. Among all, the nanomanipulation of individual biomolecules revealed new insights into the mechanics of biological molecules, in particular proteins and DNA, improving the understanding of the fundamental relation between structural properties and biological functions. Therefore, several single-molecule nanomanipulation methods have been developed, including Atomic Force Microscopy (AFM), Magnetic Tweezers (MT) and Flow Stretching (F-S) coupled with fluorescence. All these technique were employed in this Thesis for the characterisation of biological macromolecules by single molecule force spectroscopy (SMFS). In this Thesis I focus mainly on several aspects of a few different proteins trying to depict a frame in which the strong link between proteins function and their structure can be clarified. With this aim, I study the conformational states of an intrinsically disordered protein (IDP) involved in Parkinson's Disease, the a-synuclein (AS) and the structural change driving the DNA compaction mediated by structural maintenance protein, the condensin. Finally, I present a structural study of a DNA-analogue by thermal shifting essays and single molecule experiments. I included also a technical implementation of a (F-S) combined with TIRF set up to promote the high-speed exchanging buffer for study protein DNA interactions. In the AS single molecule force spectroscopy (SMFS) study, I afford the problem of AS lacking of well defined structure by stretching and unfolding a single polyprotein containing the human AS by employing a SMFS approach. The analysis of the different unfolding pathways gives information about the structural conformation of the protein before the mechanical denaturation. The AS was found to assume three distinct conformational states ranging from a random coil to a highly structured conformation. Since ligands, such as Epigallocatechin-3-Gallate (EGCG) and Dopamine (DA), are known to affect the fibrillation process of AS, I used this single molecule technique to investigate the effect of EGCG and DA on the conformational ensemble of the WT AS. Moreover, knowing from several studies that the presence of point mutations, linked to familial PD, correlate with the gaining of structure and therefore with AS aggregation, I SMFS studies also on AS with three different single point mutations (A30P, A53T and E83A). A particular emphasis was given to the comparison between SMFS results and native mass spectrometry data for the conformational changes of AS in the presence of both DA and EGCG. In the following part, related to the DAP: diaminopurine-substituted DNA, a systematic comparison between a wild-type DNA and DAP DNA is performed, in terms of thermal stability and nanomechanical properties, measured at low and high forces. At low forces the DNA extension and bending rigidity were investigated, by using both MT and AFM, while at high forces the overstretching transition behaviour was explored. In the section related to condensin mediated DNA collapsing, I present a single-molecule MT study to measure, in real-time, the compaction of individual DNA molecules by the condensin complex in the presence of ATP. Since many compaction traces showed sudden distinct decreases in the DNA end-to-end length, I present and validate two different very conservative user-bias-independent step-finding algorithm to extract the size of these compaction steps. Finally, a DNA flow stretching implementation is presented. Briefly, several flow cells were tested to achieve a fast buffer exchange in both MT and F-S coupled with TIRF, in the frame of visualisation of DNA:proteins interactions. We validated our flow cells in term of boundary exchange and applied force. We also visualized fluorescent DNA molecules stretched in the presence of several flow rates.
SALERNO, DOMENICO
CASSINA, VALERIA
Singola molecola; spettroscopia forza; proteine; DNA; alfa-synucleina
single molecule; force spectroscopy; proteins; DNA; alfa-synucleina
FIS/07 - FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)
English
16-mar-2020
SCIENZA E NANOTECNOLOGIA DEI MATERIALI
32
2018/2019
open
(2020). Single molecule force spectroscopy of proteins and DNA. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2020).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_736505.pdf

accesso aperto

Descrizione: tesi di dottorato
Dimensione 17.3 MB
Formato Adobe PDF
17.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/273770
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact