We prove a monotonicity property of the Hurwitz zeta function which, in turn, translates into a chain of inequalities for polygamma functions of different orders. We provide a probabilistic interpretation of our result by exploiting a connection between Hurwitz zeta function and the cumulants of the beta-exponential distribution.
Arbel, J., Marchal, O., Nipoti, B. (2020). On the Hurwitz zeta function with an application to the beta-exponential distribution. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020(1) [10.1186/s13660-020-02357-1].
On the Hurwitz zeta function with an application to the beta-exponential distribution
Nipoti, B
2020
Abstract
We prove a monotonicity property of the Hurwitz zeta function which, in turn, translates into a chain of inequalities for polygamma functions of different orders. We provide a probabilistic interpretation of our result by exploiting a connection between Hurwitz zeta function and the cumulants of the beta-exponential distribution.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2020_JIA_arbel_marchal_nipoti.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.