In this paper we give a unified and improved treatment to finite dimensionality results for subspaces of Lp harmonic sections of Riemannian or Hermitian vector bundles over complete manifolds. The geometric conditions on the manifold are subsumed by the assumption that the Morse index of a related Schro ̈dinger operator is finite. Applications of the finiteness theorem to concrete geometric situations are also presented.

Pigola, S., Rigoli, M., Setti, A. (2008). A finiteness theorem for the space of Lp harmonic sections. REVISTA MATEMATICA IBEROAMERICANA, 24(1), 91-116 [10.4171/RMI/531].

A finiteness theorem for the space of Lp harmonic sections

S. PIGOLA;
2008

Abstract

In this paper we give a unified and improved treatment to finite dimensionality results for subspaces of Lp harmonic sections of Riemannian or Hermitian vector bundles over complete manifolds. The geometric conditions on the manifold are subsumed by the assumption that the Morse index of a related Schro ̈dinger operator is finite. Applications of the finiteness theorem to concrete geometric situations are also presented.
Articolo in rivista - Articolo scientifico
Riemannian vector bundles, harmonic sections, Morse index
English
2008
24
1
91
116
reserved
Pigola, S., Rigoli, M., Setti, A. (2008). A finiteness theorem for the space of Lp harmonic sections. REVISTA MATEMATICA IBEROAMERICANA, 24(1), 91-116 [10.4171/RMI/531].
File in questo prodotto:
File Dimensione Formato  
PigolaRigoliSetti_FinitenessTheoremLpHarmonicSections_Revista(2008).pdf

Solo gestori archivio

Dimensione 232.54 kB
Formato Adobe PDF
232.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/271378
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
Social impact