We investigate p-harmonic maps, p ≥ 2, from a complete non-compact manifold into a non-positively curved target. First, we establish a uniqueness result for the p-harmonic representative in the homotopy class of a constant map. Next, we derive a Caccioppoli inequality for the energy density of a p-harmonic map and we prove a companion Liouville type theorem, provided the domain manifold supports a Sobolev–Poincaré inequality. Finally, we obtain energy estimates for a p-harmonic map converging, with a certain speed, to a given point.
Pigola, S., M., R., Setti, A. (2008). Constancy of p-harmonic maps of finite q -energy into non-positively curved manifolds. MATHEMATISCHE ZEITSCHRIFT, 258(2), 347-362 [10.1007/s00209-007-0175-7].
Constancy of p-harmonic maps of finite q -energy into non-positively curved manifolds
PIGOLA, STEFANO
;
2008
Abstract
We investigate p-harmonic maps, p ≥ 2, from a complete non-compact manifold into a non-positively curved target. First, we establish a uniqueness result for the p-harmonic representative in the homotopy class of a constant map. Next, we derive a Caccioppoli inequality for the energy density of a p-harmonic map and we prove a companion Liouville type theorem, provided the domain manifold supports a Sobolev–Poincaré inequality. Finally, we obtain energy estimates for a p-harmonic map converging, with a certain speed, to a given point.File | Dimensione | Formato | |
---|---|---|---|
PigolaRigoliSetti_Constancy of p-harmonic maps_Math. Z. (2008).pdf
Solo gestori archivio
Dimensione
247.11 kB
Formato
Adobe PDF
|
247.11 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.