In this paper, we present a version of the Omori–Yau maximum principle, a Liouville-type result, and a Phragmen Lindeloff-type theorem for a class of singular elliptic operators on a Riemannian manifold, which include the p-Laplacian and the mean curvature operator. Some applications of the results obtained are discussed.

Pigola, S., Rigoli, M., Setti, A. (2002). Maximum principles and singular elliptic inequalities. JOURNAL OF FUNCTIONAL ANALYSIS, 193(2), 224-260 [10.1006/jfan.2001.3930].

Maximum principles and singular elliptic inequalities

PIGOLA S.;
2002

Abstract

In this paper, we present a version of the Omori–Yau maximum principle, a Liouville-type result, and a Phragmen Lindeloff-type theorem for a class of singular elliptic operators on a Riemannian manifold, which include the p-Laplacian and the mean curvature operator. Some applications of the results obtained are discussed.
Articolo in rivista - Articolo scientifico
maximum principles; Liouville-type theorems; quasilinear elliptic inequalities
English
2002
193
2
224
260
reserved
Pigola, S., Rigoli, M., Setti, A. (2002). Maximum principles and singular elliptic inequalities. JOURNAL OF FUNCTIONAL ANALYSIS, 193(2), 224-260 [10.1006/jfan.2001.3930].
File in questo prodotto:
File Dimensione Formato  
Pigola-Rigoli-Setti_MaximumPrinciplesSingularElliptic_JFA(2002).pdf

Solo gestori archivio

Dimensione 273.68 kB
Formato Adobe PDF
273.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/271366
Citazioni
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
Social impact