In this paper, we present a version of the Omori–Yau maximum principle, a Liouville-type result, and a Phragmen Lindeloff-type theorem for a class of singular elliptic operators on a Riemannian manifold, which include the p-Laplacian and the mean curvature operator. Some applications of the results obtained are discussed.
Pigola, S., Rigoli, M., Setti, A. (2002). Maximum principles and singular elliptic inequalities. JOURNAL OF FUNCTIONAL ANALYSIS, 193(2), 224-260 [10.1006/jfan.2001.3930].
Maximum principles and singular elliptic inequalities
PIGOLA S.;
2002
Abstract
In this paper, we present a version of the Omori–Yau maximum principle, a Liouville-type result, and a Phragmen Lindeloff-type theorem for a class of singular elliptic operators on a Riemannian manifold, which include the p-Laplacian and the mean curvature operator. Some applications of the results obtained are discussed.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Pigola-Rigoli-Setti_MaximumPrinciplesSingularElliptic_JFA(2002).pdf
Solo gestori archivio
Dimensione
273.68 kB
Formato
Adobe PDF
|
273.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.