A classical result by Alexander Grigor'yan states that on a stochastically complete manifold the non-negative superharmonic $L^1$-functions are necessarily constant. In this paper we construct explicit examples showing that, in the presence of an anisotropy of the space, the reverse implication does not hold. We also consider natural geometric situations where stochastically incomplete manifolds do not posses the above mentioned $L^1$-Liouville property for superharmonic functions.

G., P., Pigola, S., Setti, A. (2013). On the L1-Liouville property of stochastically incomplete manifolds. POTENTIAL ANALYSIS, 39, 313-323 [10.1007/s11118-012-9331-8].

On the L1-Liouville property of stochastically incomplete manifolds

Stefano Pigola;
2013

Abstract

A classical result by Alexander Grigor'yan states that on a stochastically complete manifold the non-negative superharmonic $L^1$-functions are necessarily constant. In this paper we construct explicit examples showing that, in the presence of an anisotropy of the space, the reverse implication does not hold. We also consider natural geometric situations where stochastically incomplete manifolds do not posses the above mentioned $L^1$-Liouville property for superharmonic functions.
Articolo in rivista - Articolo scientifico
$L^1$-Liouville property; stochastic completeness; mean exit time
English
2013
39
313
323
reserved
G., P., Pigola, S., Setti, A. (2013). On the L1-Liouville property of stochastically incomplete manifolds. POTENTIAL ANALYSIS, 39, 313-323 [10.1007/s11118-012-9331-8].
File in questo prodotto:
File Dimensione Formato  
G. Pacelli Bessa, S. Pigola, A.G. Setti, On the L 1-Liouville Property of Stochastically Incomplete Manifolds, PoTa 39 (2013).pdf

Solo gestori archivio

Dimensione 308.95 kB
Formato Adobe PDF
308.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/271344
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
Social impact