The purpose of this paper is to give a self-contained proof that a complete manifold with more than one end never supports an L q,p -Sobolev inequality (2 ≤ p, q ≤ p ∗ ), provided the negative part of its Ricci tensor is small (in a suitable spectral sense). In the route, we discuss potential theoretic properties of the ends of a manifold enjoying an L q,p -Sobolev inequality.

Pigola, S., Setti, A., Troyanov, M. (2014). The connectivity at infinity of a manifold and Lq,p-Sobolev inequalities. EXPOSITIONES MATHEMATICAE, 32(4), 365-383 [10.1016/j.exmath.2013.12.006].

The connectivity at infinity of a manifold and Lq,p-Sobolev inequalities

Pigola, S
;
2014

Abstract

The purpose of this paper is to give a self-contained proof that a complete manifold with more than one end never supports an L q,p -Sobolev inequality (2 ≤ p, q ≤ p ∗ ), provided the negative part of its Ricci tensor is small (in a suitable spectral sense). In the route, we discuss potential theoretic properties of the ends of a manifold enjoying an L q,p -Sobolev inequality.
Articolo in rivista - Articolo scientifico
Ends of manifolds, Sobolev inequalities, Ricci curvature, L_{q,p}-cohomology
English
2014
32
4
365
383
reserved
Pigola, S., Setti, A., Troyanov, M. (2014). The connectivity at infinity of a manifold and Lq,p-Sobolev inequalities. EXPOSITIONES MATHEMATICAE, 32(4), 365-383 [10.1016/j.exmath.2013.12.006].
File in questo prodotto:
File Dimensione Formato  
Expos2014-1.pdf

Solo gestori archivio

Dimensione 340.07 kB
Formato Adobe PDF
340.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/270932
Citazioni
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
Social impact