We describe some aspects of potential theory on Riemannian manifolds, concentrating on Liouville-type theorems and their relationships with the parabolicity and stochastic completeness of the underlying manifold. Some generalizations of these concepts to the case of non-linear operators are also discussed.

Pigola, S., Rigoli, M., Setti, A. (2008). Aspects of potential theory on manifolds, linear and non-linear. MILAN JOURNAL OF MATHEMATICS, 76(1), 229-256 [10.1007/s00032-008-0084-1].

Aspects of potential theory on manifolds, linear and non-linear

Pigola S.
;
2008

Abstract

We describe some aspects of potential theory on Riemannian manifolds, concentrating on Liouville-type theorems and their relationships with the parabolicity and stochastic completeness of the underlying manifold. Some generalizations of these concepts to the case of non-linear operators are also discussed.
Articolo in rivista - Articolo scientifico
Potential theory on manifolds, Liouville-type theorems, parabolicity, stochastic completeness, p-Laplacian
English
2008
76
1
229
256
none
Pigola, S., Rigoli, M., Setti, A. (2008). Aspects of potential theory on manifolds, linear and non-linear. MILAN JOURNAL OF MATHEMATICS, 76(1), 229-256 [10.1007/s00032-008-0084-1].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/270917
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
Social impact