We introduce a decreasing one-parameter family Xγ(M) , γ> 0 , of Banach subspaces of the Hardy–Goldberg space h1(M) on certain nondoubling Riemannian manifolds with bounded geometry, and we investigate their properties. In particular, we prove that X1 / 2(M) agrees with the space of all functions in h1(M) whose Riesz transform is in L1(M) , and we obtain the surprising result that this space does not admit an atomic decomposition.

Martini, A., Meda, S., Vallarino, M. (2020). A family of Hardy-type spaces on nondoubling manifolds. ANNALI DI MATEMATICA PURA ED APPLICATA, 199(5), 2061-2085 [10.1007/s10231-020-00956-9].

A family of Hardy-type spaces on nondoubling manifolds

Meda S.;Vallarino M.
2020

Abstract

We introduce a decreasing one-parameter family Xγ(M) , γ> 0 , of Banach subspaces of the Hardy–Goldberg space h1(M) on certain nondoubling Riemannian manifolds with bounded geometry, and we investigate their properties. In particular, we prove that X1 / 2(M) agrees with the space of all functions in h1(M) whose Riesz transform is in L1(M) , and we obtain the surprising result that this space does not admit an atomic decomposition.
Articolo in rivista - Articolo scientifico
Atom; Exponential growth; Hardy space; Noncompact manifold; Riesz transform
English
20-feb-2020
2020
199
5
2061
2085
none
Martini, A., Meda, S., Vallarino, M. (2020). A family of Hardy-type spaces on nondoubling manifolds. ANNALI DI MATEMATICA PURA ED APPLICATA, 199(5), 2061-2085 [10.1007/s10231-020-00956-9].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/270903
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact