Let M be complex projective manifold, and A a positive line bundle on it. Assume that G = SU(2) acts on M in a Hamiltonian manner, with nowhere vanishing moment map, and that this action linearizes to A. Then there is an associated unitary representation of G on the associated algebro-geometric Hardy space, and the isotypical components are all finite dimensional. We consider the local and global asymptotic properties of the equivariant projector associated to a weight k ν, when ν is fixed and k → +∞.

Galasso, A., Paoletti, R. (2020). Equivariant Asymptotics of Szegő kernels under Hamiltonian SU(2)-actions. THE ASIAN JOURNAL OF MATHEMATICS, 24(3), 501-532 [10.4310/AJM.2020.v24.n3.a6].

Equivariant Asymptotics of Szegő kernels under Hamiltonian SU(2)-actions

Galasso, A.;Paoletti, R
2020

Abstract

Let M be complex projective manifold, and A a positive line bundle on it. Assume that G = SU(2) acts on M in a Hamiltonian manner, with nowhere vanishing moment map, and that this action linearizes to A. Then there is an associated unitary representation of G on the associated algebro-geometric Hardy space, and the isotypical components are all finite dimensional. We consider the local and global asymptotic properties of the equivariant projector associated to a weight k ν, when ν is fixed and k → +∞.
Articolo in rivista - Articolo scientifico
equivariant asymptotics; Hamiltonian action; Hardy space; Szegö kernel;
English
2020
24
3
501
532
6
partially_open
Galasso, A., Paoletti, R. (2020). Equivariant Asymptotics of Szegő kernels under Hamiltonian SU(2)-actions. THE ASIAN JOURNAL OF MATHEMATICS, 24(3), 501-532 [10.4310/AJM.2020.v24.n3.a6].
File in questo prodotto:
File Dimensione Formato  
Galasso-2020-Asian Journal of Mathematics-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 533.25 kB
Formato Adobe PDF
533.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Galasso-2018-Arxiv-PrePrint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 388.11 kB
Formato Adobe PDF
388.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/270520
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
Social impact