Let M be complex projective manifold, and A a positive line bundle on it. Assume that G = SU(2) acts on M in a Hamiltonian manner, with nowhere vanishing moment map, and that this action linearizes to A. Then there is an associated unitary representation of G on the associated algebro-geometric Hardy space, and the isotypical components are all finite dimensional. We consider the local and global asymptotic properties of the equivariant projector associated to a weight k ν, when ν is fixed and k → +∞.
Galasso, A., Paoletti, R. (2020). Equivariant Asymptotics of Szegő kernels under Hamiltonian SU(2)-actions. THE ASIAN JOURNAL OF MATHEMATICS, 24(3), 501-532 [10.4310/AJM.2020.v24.n3.a6].
Equivariant Asymptotics of Szegő kernels under Hamiltonian SU(2)-actions
Galasso, A.;Paoletti, R
2020
Abstract
Let M be complex projective manifold, and A a positive line bundle on it. Assume that G = SU(2) acts on M in a Hamiltonian manner, with nowhere vanishing moment map, and that this action linearizes to A. Then there is an associated unitary representation of G on the associated algebro-geometric Hardy space, and the isotypical components are all finite dimensional. We consider the local and global asymptotic properties of the equivariant projector associated to a weight k ν, when ν is fixed and k → +∞.File | Dimensione | Formato | |
---|---|---|---|
Galasso-2020-Asian Journal of Mathematics-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
533.25 kB
Formato
Adobe PDF
|
533.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Galasso-2018-Arxiv-PrePrint.pdf
accesso aperto
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Creative Commons
Dimensione
388.11 kB
Formato
Adobe PDF
|
388.11 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.