An F-essential subgroup is called a pearl if it is either elementary abelian of order p2 or non-abelian of order p3. In this paper we start the investigation of fusion systems containing pearls: we determine a bound for the order of p-groups containing pearls and we classify the saturated fusion systems on p-groups containing pearls and having sectional rank at most 4.

Grazian, V. (2018). Fusion systems containing pearls. JOURNAL OF ALGEBRA, 510, 98-140 [10.1016/j.jalgebra.2018.05.029].

Fusion systems containing pearls

Grazian, V
2018

Abstract

An F-essential subgroup is called a pearl if it is either elementary abelian of order p2 or non-abelian of order p3. In this paper we start the investigation of fusion systems containing pearls: we determine a bound for the order of p-groups containing pearls and we classify the saturated fusion systems on p-groups containing pearls and having sectional rank at most 4.
Articolo in rivista - Articolo scientifico
Elementary abelian essential subgroup; Extraspecial essential subgroup; Fusion systems; p-Groups of maximal nilpotency class; p-Groups of sectional rank at most 4; Pearls; Qd(p) groups;
Fusion systems; pearls; Qd(p) groups; elementary abelian essential subgroup; extraspecial essential subgroup; p-groups of maximal nilpotency class; p-Groups of sectional rank at most 4
English
2018
510
98
140
open
Grazian, V. (2018). Fusion systems containing pearls. JOURNAL OF ALGEBRA, 510, 98-140 [10.1016/j.jalgebra.2018.05.029].
File in questo prodotto:
File Dimensione Formato  
pearls.pdf

accesso aperto

Descrizione: Articolo principale (preprint)
Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 538.68 kB
Formato Adobe PDF
538.68 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/269236
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
Social impact