In this paper we consider a class of singularly perturbed domains, obtained by attaching a cylindrical tube to a fixed bounded region and letting its section shrink to zero. We use an Almgren-type monotonicity formula to evaluate the sharp convergence rate of perturbed simple eigenvalues, via Courant-Fischer Min-Max characterization and blow-up analysis for scaled eigenfunctions.

Felli, V., Ognibene, R. (2020). Sharp convergence rate of eigenvalues in a domain with a shrinking tube. JOURNAL OF DIFFERENTIAL EQUATIONS, 269(1), 713-763 [10.1016/j.jde.2019.12.022].

Sharp convergence rate of eigenvalues in a domain with a shrinking tube

Felli V.
;
Ognibene R.
2020

Abstract

In this paper we consider a class of singularly perturbed domains, obtained by attaching a cylindrical tube to a fixed bounded region and letting its section shrink to zero. We use an Almgren-type monotonicity formula to evaluate the sharp convergence rate of perturbed simple eigenvalues, via Courant-Fischer Min-Max characterization and blow-up analysis for scaled eigenfunctions.
Articolo in rivista - Articolo scientifico
Asymptotics of eigenvalues; Monotonicity formula; Singularly perturbed domains;
English
10-gen-2020
2020
269
1
713
763
partially_open
Felli, V., Ognibene, R. (2020). Sharp convergence rate of eigenvalues in a domain with a shrinking tube. JOURNAL OF DIFFERENTIAL EQUATIONS, 269(1), 713-763 [10.1016/j.jde.2019.12.022].
File in questo prodotto:
File Dimensione Formato  
Felli-2020-JDE-preprint.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Creative Commons
Dimensione 547.71 kB
Formato Adobe PDF
547.71 kB Adobe PDF Visualizza/Apri
Felli-2020-JDE-VoR.pdf

Solo gestori archivio

Descrizione: Publisher's Version
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 908.53 kB
Formato Adobe PDF
908.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/268385
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact