In this paper we consider a class of singularly perturbed domains, obtained by attaching a cylindrical tube to a fixed bounded region and letting its section shrink to zero. We use an Almgren-type monotonicity formula to evaluate the sharp convergence rate of perturbed simple eigenvalues, via Courant-Fischer Min-Max characterization and blow-up analysis for scaled eigenfunctions.
Felli, V., Ognibene, R. (2020). Sharp convergence rate of eigenvalues in a domain with a shrinking tube. JOURNAL OF DIFFERENTIAL EQUATIONS, 269(1), 713-763 [10.1016/j.jde.2019.12.022].
Sharp convergence rate of eigenvalues in a domain with a shrinking tube
Felli V.
;Ognibene R.
2020
Abstract
In this paper we consider a class of singularly perturbed domains, obtained by attaching a cylindrical tube to a fixed bounded region and letting its section shrink to zero. We use an Almgren-type monotonicity formula to evaluate the sharp convergence rate of perturbed simple eigenvalues, via Courant-Fischer Min-Max characterization and blow-up analysis for scaled eigenfunctions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Felli-2020-JDE-preprint.pdf
accesso aperto
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Creative Commons
Dimensione
547.71 kB
Formato
Adobe PDF
|
547.71 kB | Adobe PDF | Visualizza/Apri |
Felli-2020-JDE-VoR.pdf
Solo gestori archivio
Descrizione: Publisher's Version
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
908.53 kB
Formato
Adobe PDF
|
908.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.