1. Invasive non-native species (INNS) threaten biodiversity and ecosystem functioning globally. However, there remains a pressing need to understand the environmental factors controlling the dispersal, successful establishment and subsequent ecological impacts of INNS for receiving ecosystems. Here, we examine how region-wide flow regime magnitudes facilitate the successful establishment of an invasive crayfish species (Pacifastacus leniusculus, signal crayfish) in England (UK). We also consider the interactive effects of invasive crayfish with flow regime variations on the structural and functional diversity of macroinvertebrate communities. 2. Low-flow magnitudes increased the likelihood of P. leniusculus establishment, with 80% of recorded invasion dates falling in years with flow magnitudes below average (low- and low-moderate flow classes), whilst only 1.6% occurred in high-flow years. 3. Temporal trajectories of structural and functional macroinvertebrate responses in invaded rivers demonstrated reduced diversity compared to control rivers. Lower taxonomic and functional richness measures typically coincided with periods of low discharge in invaded rivers and were greatest during regionally high-flows. 4. Macroinvertebrate communities displayed significant structural and functional responses to the interaction between invasive crayfish and flow regime variations. Specifically, a number of low- and high-flow indices yielded significant associations, highlighting the role of extreme hydrological events in shaping INNS effects on receiving ecosystems. We also detected greater ecological effects of invasive crayfish under hydrologically stable conditions. Importantly, and for the first time, we observed that invasive crayfish reversed macroinvertebrate community responses to flow regime cues (e.g. discharge fall rate and minimum flows in the preceding 180 days). 5. Synthesis and applications. Results from this study indicate that low-flow events facilitate the spread/establishment of invasive crayfish and correspond with greater ecological effects for receiving ecosystems. Given that low-flow events are predicted to increase in intensity, duration and frequency over the 21st century, our results highlight the potential threat that invasive crayfish may pose under future hydroclimatic changes. Managing river flow regimes effectively (including maintaining higher flow events and flow variability) is likely to be vital in conserving ecological diversity following crayfish invasion.

Mathers, K., White, J., Fornaroli, R., Chadd, R. (2020). Flow regimes control the establishment of invasive crayfish and alter their effects on lotic macroinvertebrate communities. JOURNAL OF APPLIED ECOLOGY, 57(5), 886-902 [10.1111/1365-2664.13584].

Flow regimes control the establishment of invasive crayfish and alter their effects on lotic macroinvertebrate communities

Fornaroli, Riccardo
Penultimo
;
2020

Abstract

1. Invasive non-native species (INNS) threaten biodiversity and ecosystem functioning globally. However, there remains a pressing need to understand the environmental factors controlling the dispersal, successful establishment and subsequent ecological impacts of INNS for receiving ecosystems. Here, we examine how region-wide flow regime magnitudes facilitate the successful establishment of an invasive crayfish species (Pacifastacus leniusculus, signal crayfish) in England (UK). We also consider the interactive effects of invasive crayfish with flow regime variations on the structural and functional diversity of macroinvertebrate communities. 2. Low-flow magnitudes increased the likelihood of P. leniusculus establishment, with 80% of recorded invasion dates falling in years with flow magnitudes below average (low- and low-moderate flow classes), whilst only 1.6% occurred in high-flow years. 3. Temporal trajectories of structural and functional macroinvertebrate responses in invaded rivers demonstrated reduced diversity compared to control rivers. Lower taxonomic and functional richness measures typically coincided with periods of low discharge in invaded rivers and were greatest during regionally high-flows. 4. Macroinvertebrate communities displayed significant structural and functional responses to the interaction between invasive crayfish and flow regime variations. Specifically, a number of low- and high-flow indices yielded significant associations, highlighting the role of extreme hydrological events in shaping INNS effects on receiving ecosystems. We also detected greater ecological effects of invasive crayfish under hydrologically stable conditions. Importantly, and for the first time, we observed that invasive crayfish reversed macroinvertebrate community responses to flow regime cues (e.g. discharge fall rate and minimum flows in the preceding 180 days). 5. Synthesis and applications. Results from this study indicate that low-flow events facilitate the spread/establishment of invasive crayfish and correspond with greater ecological effects for receiving ecosystems. Given that low-flow events are predicted to increase in intensity, duration and frequency over the 21st century, our results highlight the potential threat that invasive crayfish may pose under future hydroclimatic changes. Managing river flow regimes effectively (including maintaining higher flow events and flow variability) is likely to be vital in conserving ecological diversity following crayfish invasion.
Articolo in rivista - Articolo scientifico
hydrological variability, invasive species, low-flow, non-native species, Pacifastacus leniusculus, river regulation, signal crayfish, structural and functional diversity
English
2020
57
5
886
902
partially_open
Mathers, K., White, J., Fornaroli, R., Chadd, R. (2020). Flow regimes control the establishment of invasive crayfish and alter their effects on lotic macroinvertebrate communities. JOURNAL OF APPLIED ECOLOGY, 57(5), 886-902 [10.1111/1365-2664.13584].
File in questo prodotto:
File Dimensione Formato  
document.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Mathers_et_al-2020-Journal_of_Applied_Ecology.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 1.88 MB
Formato Adobe PDF
1.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/266448
Citazioni
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 19
Social impact