How is auditory emotional information processed? The study's aim was to compare cerebral responses to emotionally positive or negative spoken phrases matched for structure and content. Twenty participants listened to 198 vocal stimuli while detecting filler phrases containing first names. EEG was recorded from 128 sites. Three event-related potential (ERP) components were quantified and found to be sensitive to emotional valence since 350 ms of latency. P450 and late positivity were enhanced by positive content, whereas anterior negativity was larger to negative content. A similar set of markers (P300, N400, LP) was found previously for the processing of positive versus negative affective vocalizations, prosody, and music, which suggests a common neural mechanism for extracting the emotional content of auditory information. SwLORETA applied to potentials recorded between 350 and 550 ms showed that negative speech activated the right temporo/parietal areas (BA40, BA20/21), whereas positive speech activated the left homologous and inferior frontal areas.
Proverbio, A., Santoni, S., Adorni, R. (2020). ERP Markers of Valence Coding in Emotional Speech Processing. ISCIENCE, 23(3), 100933 [10.1016/j.isci.2020.100933].
ERP Markers of Valence Coding in Emotional Speech Processing
Proverbio A. M.
Primo
;Adorni R.Membro del Collaboration Group
2020
Abstract
How is auditory emotional information processed? The study's aim was to compare cerebral responses to emotionally positive or negative spoken phrases matched for structure and content. Twenty participants listened to 198 vocal stimuli while detecting filler phrases containing first names. EEG was recorded from 128 sites. Three event-related potential (ERP) components were quantified and found to be sensitive to emotional valence since 350 ms of latency. P450 and late positivity were enhanced by positive content, whereas anterior negativity was larger to negative content. A similar set of markers (P300, N400, LP) was found previously for the processing of positive versus negative affective vocalizations, prosody, and music, which suggests a common neural mechanism for extracting the emotional content of auditory information. SwLORETA applied to potentials recorded between 350 and 550 ms showed that negative speech activated the right temporo/parietal areas (BA40, BA20/21), whereas positive speech activated the left homologous and inferior frontal areas.File | Dimensione | Formato | |
---|---|---|---|
iScience2020 1-s2.0-S2589004220301176-main.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
3.3 MB
Formato
Adobe PDF
|
3.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.