In this paper we extend Gaschutz' theorem to profinite groups (cf. Thm. A) and use this result to prove two theorems on the minimal number of generators of a pro(finite-soluble) group (cf. Thm. B, Thm. C). In section 3 we give a parameterization of the set of isomorphism classes of irreducible discrete F-p [G] -modules, where G is either a finitely generated free pro(finite-abelian) group or a tame ramification group I-q, q = p(f) (cf. Prop. 3.3, Prop. 3.6). This parameterization together with Theorem A and B allows us to calculate the probabilistic zeta-function for finitely generated free pro(finite-metabelian) groups and the absolute Galois groups of l-adic number fields explicitly (cf. Thm. D, Thm. E).

Weigel, T. (2005). On the probabilistic zeta-function of pro(finite-soluble) groups. FORUM MATHEMATICUM, 17(4), 669-698.

On the probabilistic zeta-function of pro(finite-soluble) groups

WEIGEL, THOMAS STEFAN
2005

Abstract

In this paper we extend Gaschutz' theorem to profinite groups (cf. Thm. A) and use this result to prove two theorems on the minimal number of generators of a pro(finite-soluble) group (cf. Thm. B, Thm. C). In section 3 we give a parameterization of the set of isomorphism classes of irreducible discrete F-p [G] -modules, where G is either a finitely generated free pro(finite-abelian) group or a tame ramification group I-q, q = p(f) (cf. Prop. 3.3, Prop. 3.6). This parameterization together with Theorem A and B allows us to calculate the probabilistic zeta-function for finitely generated free pro(finite-metabelian) groups and the absolute Galois groups of l-adic number fields explicitly (cf. Thm. D, Thm. E).
Articolo in rivista - Articolo scientifico
profinite groups, probabilistic generation
English
2005
17
4
669
698
none
Weigel, T. (2005). On the probabilistic zeta-function of pro(finite-soluble) groups. FORUM MATHEMATICUM, 17(4), 669-698.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/2642
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
Social impact