In this thesis I present the work I have carried out during my PhD on Ga-oxide containing nanostructured glass-ceramic films as a potential breakthrough for the implementation of this class of material in planar geometry for applications in the field of optoelectronics. In the last three years, my investigations have been aimed at understanding the relationship between the occurrence of nanostructuring – analysed through a detailed structural studies by means of different microscopy and diffractometric techniques as a function of deposition conditions and post-deposition treatments – and the physical mechanisms of charge transport and polarization taking place in oxide-in-oxide films. The studied material was produced by RF sputtering deposition starting from a glass target of Li, Na, Si, Ga and Ge mixed oxide. As a consequence of the deposition process we have obtained partially crystallized material with Ga-rich nanocrystals incorporated in the remaining amorphous matrix. Through atomic force microscopy, x-ray reflectivity, 2D-x-ray diffraction, 2D-small angle x-ray scattering - also employing synchrotron radiation facilities - we have fully characterized the nanostructured films at different length scales, from few nm to few microns. The detailed analysis of the results shows the formation of multiple anisotropic spinel Ga-oxide nanocrystals with size of about 3 nm, forming larger lenticular aggregates with significant differences between the in-plane and the out-of-plane dimensions. As a result of the investigation of differently treated samples, the study also shows that size distribution and morphology of the nanostructures can be controlled by deposition conditions, duration and temperature of post-deposition thermal treatments. Starting from the knowledge of the structural features, the research activity has been directed to the deep understanding of the charge transport properties resulting from the nanostructured nature of the material, including the Ga2O3 semiconductor nanophase and the dielectric host matrix. The electrical response – analysed with the aid of complex impedance spectroscopy – turns out to be the results of multiple contributions to transport and charging mechanisms by the matrix and the nanophase, including the effects of the internal interfaces. The data suggest that the charge transport is sustained by a combination of thermally activated hopping and tunnelling mechanisms mediated by the percolation path built up by the nanostructured features of the material. Interestingly, the overall response gives preliminary evidences of electrical plasticity, making nano-glassceramic thin films potential candidates as key systems in advanced devices for brain-inspired oxide-in-oxide fully inorganic memories.
In questa tesi presento il lavoro da me svolto durante il mio dottorato su film vetro-ceramici nanostrutturati contenenti ossido di gallio riguardo alla possibile uso di questa classe di materiali in geometria planare all’interno di dispositivi optoelettronici. Negli ultimi tre anni, le mie ricerche sono state rivolte alla comprensione della relazione fra la presenza delle nanostrutture – analizzate attraverso uno studio strutturale dettagliato grazie a diverse tecniche di microscopia e diffrazione in funzione delle condizioni di deposizioni e trattamenti successivi – e i meccanismi fisici di trasporto di carica e polarizzazione che accadono all’interno di film di ossidi-in-ossidi. Il materiale studiato è stato preparato tramite sputtering a radiofrequenze a partire da un precursore vetroso contenente ossidi di Li, Na, Si, Ga e Ge. Come conseguenza del processo di deposizione abbiamo ottenuto un materiale parzialmente cristallino con nanocristalli ricchi in Ga incorporati nel resto della matrice amorfa. Attraverso la microscopia a forza atomica, la riflessione dei raggi x, la diffrazione 2D dei raggi x, la dispersione 2D dei raggi x a piccoli angoli – anche usando luce di sincrotrone – abbiamo completamente caratterizzato i film nanostutturati a diverse scale di grandezza, da pochi nm a qualche micron. L’analisi dettagliata dei risultati mostra la formazione di molteplici nanocristalli anisotropi di spinello di ossido di gallio con dimensioni di 3 nm, che formano aggregati lenticolari di dimensioni maggiori con differenze significative nelle dimensioni nel piano e fuori dal piano. Come risultato dell’indagine di campioni trattati differentemente, lo studio ha inoltre mostrato che la distribuzione e la morfologia di nanostrutture può essere controllata dalle condizioni della deposizione, dalla durata e dalla temperatura del trattamento termico seguente. Partendo dalla conoscenza delle caratteristiche strutturali, l’attività di ricerca è stata indirizzata verso l’approfondita comprensione delle proprietà di trasporto di carica risultanti dalla natura nanostrutturata del materiale, inclusa la nanofase in Ga2O3 semiconduttore e la matrice ospite dielettrica. La risposta elettrica – analizzata con l’aiuto della spettroscopia di impedenza complessa – si è rivelata essere la risultante di molteplici meccanismi di trasporto e di carica dovuti a matrice e nanofase, incluse le interfacce interne. I dati suggeriscono che il trasporto di carica è supportato da una combinazione di meccanismi attivati termicamente per hopping e per effetto tunnel mediati da un percorso di percolazione costruito dalle caratteristiche nanostrutturali del materiale. Curiosamente, la risposta nel suo complesso ha fornito indizi preliminari di plasticità elettrica, rendendo i film sottili nano-vetroceramici dei promettenti candidati come sistemi chiave in dispositivi avanzati per memorie completamente inorganiche ossido-in-ossido ispirate al cervello umano.
(2020). Ga-rich oxide-in-oxide glass ceramics: from bulk to thin film devices. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2020).
Ga-rich oxide-in-oxide glass ceramics: from bulk to thin film devices
REMONDINA, JACOPO
2020
Abstract
In this thesis I present the work I have carried out during my PhD on Ga-oxide containing nanostructured glass-ceramic films as a potential breakthrough for the implementation of this class of material in planar geometry for applications in the field of optoelectronics. In the last three years, my investigations have been aimed at understanding the relationship between the occurrence of nanostructuring – analysed through a detailed structural studies by means of different microscopy and diffractometric techniques as a function of deposition conditions and post-deposition treatments – and the physical mechanisms of charge transport and polarization taking place in oxide-in-oxide films. The studied material was produced by RF sputtering deposition starting from a glass target of Li, Na, Si, Ga and Ge mixed oxide. As a consequence of the deposition process we have obtained partially crystallized material with Ga-rich nanocrystals incorporated in the remaining amorphous matrix. Through atomic force microscopy, x-ray reflectivity, 2D-x-ray diffraction, 2D-small angle x-ray scattering - also employing synchrotron radiation facilities - we have fully characterized the nanostructured films at different length scales, from few nm to few microns. The detailed analysis of the results shows the formation of multiple anisotropic spinel Ga-oxide nanocrystals with size of about 3 nm, forming larger lenticular aggregates with significant differences between the in-plane and the out-of-plane dimensions. As a result of the investigation of differently treated samples, the study also shows that size distribution and morphology of the nanostructures can be controlled by deposition conditions, duration and temperature of post-deposition thermal treatments. Starting from the knowledge of the structural features, the research activity has been directed to the deep understanding of the charge transport properties resulting from the nanostructured nature of the material, including the Ga2O3 semiconductor nanophase and the dielectric host matrix. The electrical response – analysed with the aid of complex impedance spectroscopy – turns out to be the results of multiple contributions to transport and charging mechanisms by the matrix and the nanophase, including the effects of the internal interfaces. The data suggest that the charge transport is sustained by a combination of thermally activated hopping and tunnelling mechanisms mediated by the percolation path built up by the nanostructured features of the material. Interestingly, the overall response gives preliminary evidences of electrical plasticity, making nano-glassceramic thin films potential candidates as key systems in advanced devices for brain-inspired oxide-in-oxide fully inorganic memories.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_738899.pdf
accesso aperto
Descrizione: tesi di dottorato
Dimensione
4.62 MB
Formato
Adobe PDF
|
4.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.