The ability to mentally simulate an action by recalling the body sensations relative to the real execution is referred to as kinesthetic motor imagery (MI). Frontal and parietal motor-related brain regions are generally engaged during MI. The present study aimed to investigate the time course and neural correlates of complex action imagery and possible effects of expertise on the underlying action representation processes. Professional ballet dancers and controls were presented with effortful and effortless ballet steps and instructed to mentally reproduce each movement during EEG recording. Time-locked MI was associated with an Anterior Negativity (AN) component (400-550 ms) that was larger in dancers relative to controls. The AN was differentially modulated by the motor content (effort) as a function of ballet expertise. It was more negative in response to effortful (than effortless) movements in control participants only. This effect also had a frontal distribution in controls and a centro-parietal distribution in dancers, as shown by the topographic maps of the scalp voltage. The source reconstruction (swLORETA) of the recorded potentials in the AN time-window showed enhanced engagement of prefrontal regions in controls (BA 10/47) relative to dancers, and occipitotemporal (BA 20) and bilateral sensorimotor areas in dancers (BA6/40) compared with controls. This evidence seems to suggest that kinesthetic MI of complex action relied on visuomotor simulation processes in participants with acquired dance expertise. Simultaneously, increased cognitive demands occurred in participants lacking in motor knowledge with the specific action. Hence, professional dance training may lead to refined action representation processes.
Orlandi, A., Arno, E., Proverbio, A. (2020). The Effect of Expertise on Kinesthetic Motor Imagery of Complex Actions. BRAIN TOPOGRAPHY, 33(2), 238-254 [10.1007/s10548-020-00760-x].
The Effect of Expertise on Kinesthetic Motor Imagery of Complex Actions
Orlandi, Andrea
Primo
;Proverbio, Alice MadoUltimo
2020
Abstract
The ability to mentally simulate an action by recalling the body sensations relative to the real execution is referred to as kinesthetic motor imagery (MI). Frontal and parietal motor-related brain regions are generally engaged during MI. The present study aimed to investigate the time course and neural correlates of complex action imagery and possible effects of expertise on the underlying action representation processes. Professional ballet dancers and controls were presented with effortful and effortless ballet steps and instructed to mentally reproduce each movement during EEG recording. Time-locked MI was associated with an Anterior Negativity (AN) component (400-550 ms) that was larger in dancers relative to controls. The AN was differentially modulated by the motor content (effort) as a function of ballet expertise. It was more negative in response to effortful (than effortless) movements in control participants only. This effect also had a frontal distribution in controls and a centro-parietal distribution in dancers, as shown by the topographic maps of the scalp voltage. The source reconstruction (swLORETA) of the recorded potentials in the AN time-window showed enhanced engagement of prefrontal regions in controls (BA 10/47) relative to dancers, and occipitotemporal (BA 20) and bilateral sensorimotor areas in dancers (BA6/40) compared with controls. This evidence seems to suggest that kinesthetic MI of complex action relied on visuomotor simulation processes in participants with acquired dance expertise. Simultaneously, increased cognitive demands occurred in participants lacking in motor knowledge with the specific action. Hence, professional dance training may lead to refined action representation processes.File | Dimensione | Formato | |
---|---|---|---|
Orlandi2020_Article_TheEffectOfExpertiseOnKinesthe.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
4.65 MB
Formato
Adobe PDF
|
4.65 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.