My thesis work was based on the characterization of porous materials, paying particular attention to the research of dynamic elements within the structures and to the study of adsorbed gases. I was able to detect the presence of ultrafast paraphenylenic rotors in both porous molecular crystals and metal-organic frameworks (MOFs). A more detailed study has also revealed how these motions are influenced by the adsorbed gas. Specifically, the activation energy of the rotation increases as a function of the quantity of gas in the pores. To better understand this interaction, the knowledge of the behavior of gases in porous materials is fundamental. I turned my attention to the study of xenon and CO2 motion in different materials. The combined use of NMR and ab initio calculations proved to be fundamental for understanding these phenomena and it was possible to reveal particular characteristics both of the gases and of the materials. The complexity of the diffusion within the channels has also been presented in unusual ways as the helicoidal motion of carbon dioxide imposed by the electrostatic potential. To continue the study of pore gases, I characterized several porous aromatic frameworks (PAFs) with the hyperpolarized xenon technique. This not only allowed me to accurately measure the pore size but also to calculate the interaction energy between the xenon and the channel walls. To expand my knowledge on hyperpolarization as an NMR technique, I spent six months at the group of Prof. L. Emsley in Lausanne learning dynamic nuclear polarization (DNP) as well as its application to different materials.

Il mio lavoro di tesi si è basato sulla caratterizzazione dei materiali porosi rivolgendo particolare attenzione alla ricerca di elementi dinamici all’interno delle strutture e allo studio dei gas adsorbiti. Sono riuscito a rilevare la presenza di rotori parafenilenici ultraveloci sia in cristalli molecolari porosi che in metal-organic framework (MOF). Uno studio più approfondito ha inoltre rivelato come questi moti siano influenzati dal gas adsorbito. Nello specifico l’energia di attivazione della rotazione aumenta in funzione della quantità di gas nei pori. Per meglio capire questa interazione è però fondamentale la conoscenza del comportamento dei gas nei materiali porosi. Ho pertanto rivolto la mia attenzione allo studio del moto di xeno e CO2 in diversi materiali. L’utilizzo combinato di NMR e calcoli ab initio si è rivelato fondamentale per la comprensione di questi fenomeni ed è stato possibile rivelare particolari caratteristiche tanto dei gas quanto dei materiali stessi. La complessità della diffusione all’interno dei canali si è anche presentata in modi insoliti come il moto elicoidale dell’anidride carbonica imposto dal potenziale elettrostatico. Volendo continuare lo studio dei gas nei pori, ho caratterizzato diversi porous aromatic framework (PAF) con la tecnica dello xeno iperpolarizzato. Questo non mi ha consentito solo di misurare con accuratezza le dimensioni dei pori ma anche calcolare l’energia di interazione tra lo xeno e le pareti dei canali. Desiderando espandere le mie conoscenze sull’iperpolarizzazione come tecnica NMR, ho passato sei mesi presso il gruppo del Prof. L. Emsley a Losanna imparando la dynamic nuclear polarization (DNP) nonché la sua applicazione a diversi materiali.

(2020). Dynamics in Porous Materials. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2020).

Dynamics in Porous Materials

NEGRONI, MATTIA
2020

Abstract

My thesis work was based on the characterization of porous materials, paying particular attention to the research of dynamic elements within the structures and to the study of adsorbed gases. I was able to detect the presence of ultrafast paraphenylenic rotors in both porous molecular crystals and metal-organic frameworks (MOFs). A more detailed study has also revealed how these motions are influenced by the adsorbed gas. Specifically, the activation energy of the rotation increases as a function of the quantity of gas in the pores. To better understand this interaction, the knowledge of the behavior of gases in porous materials is fundamental. I turned my attention to the study of xenon and CO2 motion in different materials. The combined use of NMR and ab initio calculations proved to be fundamental for understanding these phenomena and it was possible to reveal particular characteristics both of the gases and of the materials. The complexity of the diffusion within the channels has also been presented in unusual ways as the helicoidal motion of carbon dioxide imposed by the electrostatic potential. To continue the study of pore gases, I characterized several porous aromatic frameworks (PAFs) with the hyperpolarized xenon technique. This not only allowed me to accurately measure the pore size but also to calculate the interaction energy between the xenon and the channel walls. To expand my knowledge on hyperpolarization as an NMR technique, I spent six months at the group of Prof. L. Emsley in Lausanne learning dynamic nuclear polarization (DNP) as well as its application to different materials.
COMOTTI, ANGIOLINA
Materiali Porosi; Rotori Molecolari; Dinamica dei gas; Spettroscopia NMR; Adsorbimento
Porous Materials; Molecular Rotors; Gas Dynamic; NMR Spectroscopy; Adsorbimento
CHIM/04 - CHIMICA INDUSTRIALE
English
21-feb-2020
SCIENZA E NANOTECNOLOGIA DEI MATERIALI
32
2018/2019
open
(2020). Dynamics in Porous Materials. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2020).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_745759.pdf

Accesso Aperto

Descrizione: tesi di dottorato
Dimensione 19.77 MB
Formato Adobe PDF
19.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/263115
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact