In the last decades, the ability to control the behavior of the matter at the nanoscale has yielded many technological breakthroughs. Such miniaturization steps have been triggered not only by the development of novel experimental techniques of synthesis and characterization of the materials, but also by the introduction of advanced theoretical models based on quantum mechanics. Through these models, it has been possible to simulate the behavior of the matter in order to support, expand and also predict experimental results. The work included in this thesis is focused on investigating the interfaces created by coupling metallic surfaces with materials with different dimensionality. The models more appropriate for describing such systems have been identified in order to extract the physical properties more relevant to describe the active processes at the interfaces but also to be compared with and fully exploit the experimental data. Four cases have been taken into account, as prototypes of materials with different dimensionality: a single organic molecule, pentacene, representing the isolated system, chains of carbon atoms, representing mono-dimensional systems, a silicene sheet, representing a two-dimensional system and the reconstruction of Si atoms on a substrate as a limit case of higher dimensionality. Part of the study has been dedicated to identify the properties of the pristine materials, but the main effort has been focused on the changes of such properties induced by the presence of metallic surfaces as Pt(111), Au(111), Ag(111) and Ag(110) respectively, commonly found in opto-electronic devices. From the atomistic point of view, the geometry and the electronic properties of each system have been derived within the framework of density function theory. Such an approach is suited for the ground state only: therefore it has been necessary to extend the theoretical models to describe the excited states too, which are those commonly probed by experimental techniques. Every technique, however requires a dedicated approach to deal with and solve the related model. In particular, in this thesis the x-rays absorption spectrum has been investigated to gather insights on the interactions between pentacene and Pt(111) and to verify the contribution of carbon chains in the absorption from organic molecules with mixed sp1, sp2 hybridization states. The optical absorption has been then investigated along with the reflectivity for silicene grown on Ag(111), in relation with the electronic structure of the system and its modifications induced by the functionalization of the surface through the adsorption of H or F at different coverages. It has been shown that silicene peculiar properties are lost not only because of the presence of a substrate, but because of the reactivity itself of Si atoms. As a last case, the deposition of Si on the substrate made of a thin film of NaCl grown on Ag(110) has been investigated in order to understand whether is possible to recover the Dirac cone structure. As experimental results do not provide a solid evidence about the actual formation of a silicene overlayer, additional insight was indeed required about the structure of the reconstruction of Si atoms. Both a static and a dynamic approach have been followed, in order to find the best structure matching the experimental topography and to tailor the self-assembly process itself. Finally, the most probable configuration has been searched through a novel approach based on genetic algorithms, which are inspired by the natural selection process observed in biology to optimize the evaluation of random configurations.
La possibilità di controllare la materia alle dimensioni tipiche di qualche atomo ha permesso negli ultimi decenni enormi progressi in campo tecnologico. Questa miniaturizzazione è stata resa possibile dallo sviluppo di adeguate tecniche sperimentali di sintesi e controllo dei materiali, ma anche dall’introduzione di modelli teorici per descrivere i fenomeni fisici tramite il formalismo della meccanica quantistica. Questi modelli hanno permesso di descrivere la materia tramite approcci numerici, in modo da supportare, espandere ed anticipare i risultati sperimentali. Questo lavoro di tesi è concentrato sull’investigazione di interfacce create dall’accoppiamento di superfici metalliche con materiali a diversa dimensionalità. Si sono identificati i modelli più appropriati per descrivere tali sistemi ed estratte diverse quantità fisiche indicative della natura dei processi attivi alle interfacce e che potessero essere confrontate con risultati di natura sperimentale. Si sono considerati quattro casi, prototipi di materiali a diversa dimensionalità: una singola molecola organica, il pentacene, rappresentativo di un sistema isolato; catene di atomi di carbonio, rappresentativi di sistemi monodimensionali; un foglio di silicene, rappresentativo di sistemi puramente bidimensionali ed infine la ricostruzione di atomi di silicio su un substrato come caso limite per un sistema esteso. Parte dello studio è stato dedicato ad identificare le proprietà di questi sistemi in assenza di altre interazioni, ma soprattutto si è indirizzato a mostrare le modifiche a tali proprietà in presenza di diversi substrati metallici, rispettivamente Pt(111), Au(111), Ag(111) e Ag(110), caso tipico nel caso delle maggiori applicazioni nel campo dell’optoelettronica. Dal punto di vista teorico, la struttura geometrica e le proprietà elettroniche di ogni sistema sono state costruite a partire dalla teoria del funzionale densità. Tale metodo però non è sufficiente, visto che così viene costruito lo stato fondamentale del sistema: è necessario estendere i modelli per poter costruire gli stati eccitati, che tipicamente sono quelli investigati dalle tecniche sperimentali. Ogni tecnica, d’altra parte, richiede un diverso approccio per costruire e risolvere il relativo modello. In dettaglio, si è studiato lo spettro di assorbimento dei raggi x per classificare l’ interazione all’interfaccia pentacene/Pt(111) come chemisorbimento o per verificare l’impronta dell’assorbimento di catene di carbonio nel caso di molecole organiche caratterizzate da ibridazione mista di tipo sp1 e sp2. Si è investigato lo spettro di assorbimento ottico e la relativa riflettività nel caso del silicene cresciuto su Ag(111), in relazione alla struttura elettronica del sistema e delle sue modifiche indotte dalla funzionalizzazione della superficie tramite adsorbimento di singoli atomi di H o F a diversi ricoprimenti. Si è mostrato come la caratteristiche tipiche del silicene vengano perse non solo a causa del substrato, ma a causa della reattività del silicio. Come ultimo caso si sono considerati atomi di Si depositati su un film sottile di NaCl cresciuto su una superficie di Ag(110), con lo scopo di recuperare la struttura elettronica dovuta al cono di Dirac. Gli indizi contrastanti forniti da una caratterizzazione sperimentale del sistema riguardo la geometria e le proprietà elettroniche hanno richiesto un metodo diversificato per ricercare il modello più appropriato di ricostruzione degli atomi di Si. In particolare si è proceduto sia staticamente, ricercando le strutture più in accordo con la topografia emersa dagli esperimenti, ma anche tramite un approccio dinamico, volto a caratterizzare il processo stesso di aggregazione degli adatomi. Infine, si è considerata anche una ricerca ottimizzata di configurazioni casuali, basata su algoritmi genetici, ovvero ispirati al processo di selezione naturale osservato in biologia.
(2020). Investigating metal-organic/inorganic interfaces with different dimensionalities from first-principles. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2020).
Investigating metal-organic/inorganic interfaces with different dimensionalities from first-principles
UGOLOTTI, ALDO
2020
Abstract
In the last decades, the ability to control the behavior of the matter at the nanoscale has yielded many technological breakthroughs. Such miniaturization steps have been triggered not only by the development of novel experimental techniques of synthesis and characterization of the materials, but also by the introduction of advanced theoretical models based on quantum mechanics. Through these models, it has been possible to simulate the behavior of the matter in order to support, expand and also predict experimental results. The work included in this thesis is focused on investigating the interfaces created by coupling metallic surfaces with materials with different dimensionality. The models more appropriate for describing such systems have been identified in order to extract the physical properties more relevant to describe the active processes at the interfaces but also to be compared with and fully exploit the experimental data. Four cases have been taken into account, as prototypes of materials with different dimensionality: a single organic molecule, pentacene, representing the isolated system, chains of carbon atoms, representing mono-dimensional systems, a silicene sheet, representing a two-dimensional system and the reconstruction of Si atoms on a substrate as a limit case of higher dimensionality. Part of the study has been dedicated to identify the properties of the pristine materials, but the main effort has been focused on the changes of such properties induced by the presence of metallic surfaces as Pt(111), Au(111), Ag(111) and Ag(110) respectively, commonly found in opto-electronic devices. From the atomistic point of view, the geometry and the electronic properties of each system have been derived within the framework of density function theory. Such an approach is suited for the ground state only: therefore it has been necessary to extend the theoretical models to describe the excited states too, which are those commonly probed by experimental techniques. Every technique, however requires a dedicated approach to deal with and solve the related model. In particular, in this thesis the x-rays absorption spectrum has been investigated to gather insights on the interactions between pentacene and Pt(111) and to verify the contribution of carbon chains in the absorption from organic molecules with mixed sp1, sp2 hybridization states. The optical absorption has been then investigated along with the reflectivity for silicene grown on Ag(111), in relation with the electronic structure of the system and its modifications induced by the functionalization of the surface through the adsorption of H or F at different coverages. It has been shown that silicene peculiar properties are lost not only because of the presence of a substrate, but because of the reactivity itself of Si atoms. As a last case, the deposition of Si on the substrate made of a thin film of NaCl grown on Ag(110) has been investigated in order to understand whether is possible to recover the Dirac cone structure. As experimental results do not provide a solid evidence about the actual formation of a silicene overlayer, additional insight was indeed required about the structure of the reconstruction of Si atoms. Both a static and a dynamic approach have been followed, in order to find the best structure matching the experimental topography and to tailor the self-assembly process itself. Finally, the most probable configuration has been searched through a novel approach based on genetic algorithms, which are inspired by the natural selection process observed in biology to optimize the evaluation of random configurations.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_774295.pdf
accesso aperto
Descrizione: tesi di dottorato
Dimensione
13.62 MB
Formato
Adobe PDF
|
13.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.