Airborne pollution is a noteworthy environmental and health threat. It has been classified as carcinogenic to humans (Group 1) and greatly contributes to increased morbidity, mortality and respiratory and cardiovascular diseases exacerbation. Air pollution can be generated both by natural and anthropogenic sources. Among anthropogenic sources the main contributors are diesel exhaust and biomass-derived particles. Several experimental and epidemiological studies have been performed on traffic-related and biomass burning-derived particles as chief contributors to the adverse health effects reported after exposure to particulate matter (PM). These studies describe the particle toxicological effects reporting different responses on the biological endpoints investigated on in vitro and in vivo systems. PM properties indeed may vary depending on several parameters, including emission sources. According to the different emission sources, particles can show different physico-chemical properties, such as size, shape, surface area, solubility and chemical composition. All these properties might seriously affect the biological reactivity and thus the final impact on human health. Nevertheless, our knowledge on the different biological responses and molecular mechanisms triggered by particles with variable physico-chemical properties is still poor. In the present thesis, the cytotoxic, genotoxic and pro-carcinogenic properties of particles collected during combustion of different biomass and diesel sources (CDPs) have been investigated: - biomass particles collected from the emission of a heating system operating with pellet, charcoal or wood respectively; - diesel exhaust ultrafine particles (DEP) directly sampled from a Euro IV vehicle run over a chassis dyno. In the first part of the work, attention was given to particles collected from biomass combustion. The role possibly played by biomass particles collected during the combustion of different fuels under identical conditions in the same stove (commonly used) on different toxicological and pro-carcinogenesis processes was investigated. To further explore the relative role of the particle core versus particle-adsorbed compounds in the lung epithelial cells response, the respective organic fractions and the remaining washed particles were also tested. Two different cell lines were used to assess biomass effects after acute and prolonged exposure: A549 alveolar epithelial cells (Chapters 1 and 2) and HBEC-3KT bronchial epithelial cells (Chapter 3). In the second part of the work (Chapter 4), the biological effects induced by diesel combustion particles (DEP) were described, focusing on their health hazard at both respiratory and vascular levels. Moreover, a possible molecular mechanism leading to cardiovascular effects induced by DEP has been explored. In conclusion, the present thesis points out the central role of the particle chemical composition in generating significant adverse outcomes. These results demonstrated that particles from different emission sources and fuels may differently affect human health at respiratory and cardiovascular levels according to their composition. Thus, advanced strategies are needed to reduce the biological impact triggered by the emission of diesel engine and biomass-propelled heating systems and prevent harmful health effects.
L'inquinamento atmosferico è una considerevole minaccia, sia per l’ambiente che per la salute. È stato classificato come cancerogeno per l'uomo (gruppo 1) e contribuisce notevolmente all’aumento di morbilità, mortalità e all'esacerbazione delle malattie respiratorie e cardiovascolari. L'inquinamento atmosferico può essere generato sia da fonti naturali che antropogeniche. Tra le fonti antropogeniche i principali contribuenti sono le particelle emesse dalla combustione di biomassa e motori a diesel. Numerosi studi sperimentali ed epidemiologici sono stati condotti su queste particelle, considerate tra le principali responsabili degli effetti avversi sulla salute dopo l'esposizione al particolato (PM). Questi studi descrivono gli effetti tossicologici delle particelle riportando risposte diverse in funzione di specifici endpoint biologici studiati in sistemi in vitro e in vivo. Le proprietà del PM possono infatti variare in base a diversi parametri, tra cui le fonti di emissione. Infatti, in base alle fonti di emissione le particelle possono mostrare diverse proprietà fisico-chimiche, come dimensioni, forma, superficie, solubilità e composizione chimica. Tutte queste proprietà possono influenzare in maniera significativa la riposta biologica e quindi l'impatto finale sulla salute umana. Tuttavia, la nostra conoscenza delle diverse risposte biologiche e dei meccanismi molecolari innescati da particelle con proprietà fisico-chimiche variabili è ancora scarsa. Nella presente tesi sono state studiate le proprietà citotossiche, genotossiche e cancerogene delle particelle raccolte durante la combustione di diverse fonti di biomassa e diesel (CDP): - particelle di biomassa raccolte dall'emissione di un sistema di riscaldamento funzionante rispettivamente con pellet, carbone o legno; - particelle ultrafini di diesel (DEP) campionate direttamente da un motore leggero Euro IV senza filtro antiparticolato. Nella prima parte del lavoro, è stata prestata attenzione alle particelle raccolte dalla combustione della biomassa. È stato studiato il ruolo possibilmente svolto dalle particelle, raccolte durante la combustione di differenti biomasse in condizioni identiche nella stessa stufa (comunemente utilizzata), su diversi processi tossicologici e cancerogeni. Per esplorare ulteriormente il ruolo relativo del nucleo carbonioso delle particelle, rispetto ai composti chimici adsorbiti su di esso, nella risposta delle cellule epiteliali polmonari sono state testate anche le rispettive frazioni organiche e le rimanenti particelle lavate. Per valutare gli effetti della biomassa dopo esposizione acuta e prolungata sono state utilizzate due diverse linee cellulari: cellule epiteliali alveolari A549 (Capitoli 1 e 2) e cellule epiteliali bronchiali HBEC-3KT (Capitolo 3). Nella seconda parte del lavoro (capitolo 4), sono stati descritti gli effetti biologici indotti dalle particelle derivanti dalla combustione di diesel (DEP) focalizzandosi sugli effetti prodotti a livello respiratorio e vascolare. È stato studiato anche uno dei possibili meccanismi molecolari coinvolti nell’insorgenza degli effetti cardiovascolari indotti dal DEP. In conclusione, la presente tesi sottolinea il ruolo centrale della composizione chimica delle particelle nella manifestazione di importanti effetti sulla salute. I risultati ottenuti dimostrano che le particelle provenienti da diverse fonti di emissione e da carburanti possono influire in modo diverso sulla salute umana, sia a livello respiratorio che a livello cardiovascolare, in base alla loro composizione chimica. Pertanto, sono necessarie strategie avanzate per ridurre l'impatto biologico innescato dall'emissione di motori diesel e sistemi di riscaldamento a biomassa e per prevenire effetti dannosi sulla salute.
(2020). A CASE STUDY ON COMBUSTION-DERIVED PARTICLES: EVALUATION OF THE BIOLOGICAL EFFECTS ON HUMAN PULMONARY CELL LINES. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2020).
A CASE STUDY ON COMBUSTION-DERIVED PARTICLES: EVALUATION OF THE BIOLOGICAL EFFECTS ON HUMAN PULMONARY CELL LINES
MARCHETTI, SARA
2020
Abstract
Airborne pollution is a noteworthy environmental and health threat. It has been classified as carcinogenic to humans (Group 1) and greatly contributes to increased morbidity, mortality and respiratory and cardiovascular diseases exacerbation. Air pollution can be generated both by natural and anthropogenic sources. Among anthropogenic sources the main contributors are diesel exhaust and biomass-derived particles. Several experimental and epidemiological studies have been performed on traffic-related and biomass burning-derived particles as chief contributors to the adverse health effects reported after exposure to particulate matter (PM). These studies describe the particle toxicological effects reporting different responses on the biological endpoints investigated on in vitro and in vivo systems. PM properties indeed may vary depending on several parameters, including emission sources. According to the different emission sources, particles can show different physico-chemical properties, such as size, shape, surface area, solubility and chemical composition. All these properties might seriously affect the biological reactivity and thus the final impact on human health. Nevertheless, our knowledge on the different biological responses and molecular mechanisms triggered by particles with variable physico-chemical properties is still poor. In the present thesis, the cytotoxic, genotoxic and pro-carcinogenic properties of particles collected during combustion of different biomass and diesel sources (CDPs) have been investigated: - biomass particles collected from the emission of a heating system operating with pellet, charcoal or wood respectively; - diesel exhaust ultrafine particles (DEP) directly sampled from a Euro IV vehicle run over a chassis dyno. In the first part of the work, attention was given to particles collected from biomass combustion. The role possibly played by biomass particles collected during the combustion of different fuels under identical conditions in the same stove (commonly used) on different toxicological and pro-carcinogenesis processes was investigated. To further explore the relative role of the particle core versus particle-adsorbed compounds in the lung epithelial cells response, the respective organic fractions and the remaining washed particles were also tested. Two different cell lines were used to assess biomass effects after acute and prolonged exposure: A549 alveolar epithelial cells (Chapters 1 and 2) and HBEC-3KT bronchial epithelial cells (Chapter 3). In the second part of the work (Chapter 4), the biological effects induced by diesel combustion particles (DEP) were described, focusing on their health hazard at both respiratory and vascular levels. Moreover, a possible molecular mechanism leading to cardiovascular effects induced by DEP has been explored. In conclusion, the present thesis points out the central role of the particle chemical composition in generating significant adverse outcomes. These results demonstrated that particles from different emission sources and fuels may differently affect human health at respiratory and cardiovascular levels according to their composition. Thus, advanced strategies are needed to reduce the biological impact triggered by the emission of diesel engine and biomass-propelled heating systems and prevent harmful health effects.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_725747.pdf
Accesso Aperto
Descrizione: tesi di dottorato
Dimensione
19.07 MB
Formato
Adobe PDF
|
19.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.