This paper presents the design and experimental characterization of a 28 nm Complementary Metal Oxide Semiconductor (CMOS) Analog Front-End (AFE) for fast-tracking small-diameter Muon Drift-Tube (sMDT) detectors. The device exploits an innovative analog signal processing that allows a strong increase in the detection rate of events and significantly reduces the impact of fake/pile-up events, which often corrupt incident radiation energy events. The proposed device converts the input charge coming from incident radiations into voltage by a dedicated Charge-Sensitive Preamplifier (CSPreamp). Therefore, the fast-tracking concept relies on sampling the slope of the CSPreamp output voltage and using it for detecting both the incident event arrival instant and the amount of charge that has been effectively read out by MDT detectors. This avoids the long processing times intrinsically needed for baseline recovery transient, during which the detected signal can be severely corrupted by additional and unwanted extra-events, resulting in extra-charge (and thus in CSP output voltage extra-transient) during the signal roll-off. The proposed analog channel operates with a 5–100 fC input charge range and has a maximum deadtime of 200 ns (against the 545 ns of the state-of-the-art). It occupies 0.03 mm2 and consumes 1.9 mW from 1 V of supply voltage.
Pipino, A., Resta, F., Mangiagalli, L., De Matteis, M., Kroha, H., Richter, R., et al. (2020). A 28 nm Bulk-CMOS Analog Front-End for High-Rate ATLAS Muon Drift-Tube Detectors. SENSORS, 20(1) [10.3390/s20010042].
A 28 nm Bulk-CMOS Analog Front-End for High-Rate ATLAS Muon Drift-Tube Detectors
Pipino A.;Resta F.;Mangiagalli L.
;De Matteis M.;Baschirotto A.
2020
Abstract
This paper presents the design and experimental characterization of a 28 nm Complementary Metal Oxide Semiconductor (CMOS) Analog Front-End (AFE) for fast-tracking small-diameter Muon Drift-Tube (sMDT) detectors. The device exploits an innovative analog signal processing that allows a strong increase in the detection rate of events and significantly reduces the impact of fake/pile-up events, which often corrupt incident radiation energy events. The proposed device converts the input charge coming from incident radiations into voltage by a dedicated Charge-Sensitive Preamplifier (CSPreamp). Therefore, the fast-tracking concept relies on sampling the slope of the CSPreamp output voltage and using it for detecting both the incident event arrival instant and the amount of charge that has been effectively read out by MDT detectors. This avoids the long processing times intrinsically needed for baseline recovery transient, during which the detected signal can be severely corrupted by additional and unwanted extra-events, resulting in extra-charge (and thus in CSP output voltage extra-transient) during the signal roll-off. The proposed analog channel operates with a 5–100 fC input charge range and has a maximum deadtime of 200 ns (against the 545 ns of the state-of-the-art). It occupies 0.03 mm2 and consumes 1.9 mW from 1 V of supply voltage.File | Dimensione | Formato | |
---|---|---|---|
10281-261750_VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
4.08 MB
Formato
Adobe PDF
|
4.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.