We consider Heisenberg groups equipped with a sub-Finsler metric. Using methods of optimal control theory we prove that in this geometric setting the infinite geodesics are horizontal lines under the assumption that the sub-Finsler metric is defined by a strictly convex norm. This answers a question posed in [8] and has applications in the characterization of isometric embeddings into Heisenberg groups.
Balogh, Z., Calogero, A. (2021). Infinite Geodesics of Sub-Finsler Distances in Heisenberg Groups. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021(7), 4805-4837 [10.1093/imrn/rnz074].
Infinite Geodesics of Sub-Finsler Distances in Heisenberg Groups
Calogero, A
2021
Abstract
We consider Heisenberg groups equipped with a sub-Finsler metric. Using methods of optimal control theory we prove that in this geometric setting the infinite geodesics are horizontal lines under the assumption that the sub-Finsler metric is defined by a strictly convex norm. This answers a question posed in [8] and has applications in the characterization of isometric embeddings into Heisenberg groups.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
rnz074.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
442.39 kB
Formato
Adobe PDF
|
442.39 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
infinite geodesic BALOGH_CALOGERO.pdf
accesso aperto
Tipologia di allegato:
Submitted Version (Pre-print)
Dimensione
319.55 kB
Formato
Adobe PDF
|
319.55 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.