We investigated the surface diffusion and island nucleation of Ge on Si(100) in presence of a submonolayer coverage of carbon as surfactant by using scanning Auger microscopy and atomic force microscopy. Ge stripes have been deposited and lithographically etched on a Si substrate and used as sources for the surface diffusion of Ge promoted by annealing at 600, 650, and 700 °C. The diffusion coefficient has been determined by fitting the postannealing coverage profiles measured by Auger microscopy with a one-dimensional continuous model. The carbon coverage has been spatially modulated on a single sample, allowing the measurement of the diffusion coefficient as a function of the C thickness at 600 °C. We show that the reduction in the diffusion coefficient while increasing the surfactant coverage is described by a linear dependence of the diffusion activation energy on the C coverage. This dependence is discussed in terms of the chemical interactions among Si, C, and Ge, of the surface roughness and the local strain field induced by the C surfactant. Spontaneous nucleation of SiGe islands coexists with the continuous surface diffusion of Ge. The transition of the island nucleation as a function of the carbon coverage is observed to be continuous from the Stranski-Krastanov mode to the Volmer-Weber regime. We propose a consistent scenario correlating diffusion and nucleation parameters within a diffusion limited growth regime and show the existence of a threshold for C coverage below which no effect is observed
Vanacore, G., Zani, M., Isella, G., Osmond, J., Bollani, M., Tagliaferri, A. (2010). Quantitative investigation of the influence of carbon surfactant on Ge surface diffusion and island nucleation on Si(100). PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS, 82(12), 1-11 [10.1103/PhysRevB.82.125456].
Quantitative investigation of the influence of carbon surfactant on Ge surface diffusion and island nucleation on Si(100)
VANACORE, GIOVANNI MARIA;
2010
Abstract
We investigated the surface diffusion and island nucleation of Ge on Si(100) in presence of a submonolayer coverage of carbon as surfactant by using scanning Auger microscopy and atomic force microscopy. Ge stripes have been deposited and lithographically etched on a Si substrate and used as sources for the surface diffusion of Ge promoted by annealing at 600, 650, and 700 °C. The diffusion coefficient has been determined by fitting the postannealing coverage profiles measured by Auger microscopy with a one-dimensional continuous model. The carbon coverage has been spatially modulated on a single sample, allowing the measurement of the diffusion coefficient as a function of the C thickness at 600 °C. We show that the reduction in the diffusion coefficient while increasing the surfactant coverage is described by a linear dependence of the diffusion activation energy on the C coverage. This dependence is discussed in terms of the chemical interactions among Si, C, and Ge, of the surface roughness and the local strain field induced by the C surfactant. Spontaneous nucleation of SiGe islands coexists with the continuous surface diffusion of Ge. The transition of the island nucleation as a function of the carbon coverage is observed to be continuous from the Stranski-Krastanov mode to the Volmer-Weber regime. We propose a consistent scenario correlating diffusion and nucleation parameters within a diffusion limited growth regime and show the existence of a threshold for C coverage below which no effect is observedFile | Dimensione | Formato | |
---|---|---|---|
PRB 2010,82,12,5456 Vanacore.pdf
Solo gestori archivio
Dimensione
865.1 kB
Formato
Adobe PDF
|
865.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.