H11 kinase/Hsp22 (Hsp22) is a small heat shock protein, which, when overexpressed cardiac specifically in transgenic (TG) mice, induces stable left ventricular (LV) hypertrophy. Hsp22 also increases oxidative phosphorylation and mitochondrial reactive oxygen species (ROS) production, mechanisms mediating LV hypertrophy, senescence and reduced lifespan. Therefore, we investigated whether ROS production mediates LV hypertrophy, senescence and reduced life span in Hsp22 TG mice. Survival curves revealed that TG mice had a 48% reduction in their mean life span compared to wild type (WT) mice. This was associated with a significant increase in senescence markers, such as p16, p19 mRNA levels as well as the percentage of β-galactosidase positive cells and telomerase activity. Oxidized (GSSG)/reduced (GSH) glutathione ratio, an indicator of oxidative stress, and ROS production from 3 major cellular sources was measured in cardiac tissue. Hearts from TG mice exhibited a decrease in GSH/GSSG ratio together with increased ROS production from all sources. To study the role of ROS, mice were treated with the antioxidant Tempol from weaning to their sacrifice. Chronic Tempol treatment abolished oxidative stress and overproduction of ROS, and reduced myocardial hypertrophy and Akt phosphorylation in TG mice. Tempol also significantly extended life span and prevented aging markers in TG mice. Taken together these results show that overexpression of Hsp22 increases oxidative stress responsible for the induction of hypertrophy and senescence and ultimately reduction in life span.

Morin, D., Long, R., Panel, M., Laure, L., Taranu, A., Gueguen, C., et al. (2019). Hsp22 overexpression induces myocardial hypertrophy, senescence and reduced life span through enhanced oxidative stress. FREE RADICAL BIOLOGY & MEDICINE, 137, 194-200 [10.1016/j.freeradbiomed.2019.04.035].

Hsp22 overexpression induces myocardial hypertrophy, senescence and reduced life span through enhanced oxidative stress

Leoni V.;
2019

Abstract

H11 kinase/Hsp22 (Hsp22) is a small heat shock protein, which, when overexpressed cardiac specifically in transgenic (TG) mice, induces stable left ventricular (LV) hypertrophy. Hsp22 also increases oxidative phosphorylation and mitochondrial reactive oxygen species (ROS) production, mechanisms mediating LV hypertrophy, senescence and reduced lifespan. Therefore, we investigated whether ROS production mediates LV hypertrophy, senescence and reduced life span in Hsp22 TG mice. Survival curves revealed that TG mice had a 48% reduction in their mean life span compared to wild type (WT) mice. This was associated with a significant increase in senescence markers, such as p16, p19 mRNA levels as well as the percentage of β-galactosidase positive cells and telomerase activity. Oxidized (GSSG)/reduced (GSH) glutathione ratio, an indicator of oxidative stress, and ROS production from 3 major cellular sources was measured in cardiac tissue. Hearts from TG mice exhibited a decrease in GSH/GSSG ratio together with increased ROS production from all sources. To study the role of ROS, mice were treated with the antioxidant Tempol from weaning to their sacrifice. Chronic Tempol treatment abolished oxidative stress and overproduction of ROS, and reduced myocardial hypertrophy and Akt phosphorylation in TG mice. Tempol also significantly extended life span and prevented aging markers in TG mice. Taken together these results show that overexpression of Hsp22 increases oxidative stress responsible for the induction of hypertrophy and senescence and ultimately reduction in life span.
Articolo in rivista - Articolo scientifico
Hsp22 overexpression; Life span; Myocardial hypertrophy; Oxidative stress; Senescence
English
2019
137
194
200
reserved
Morin, D., Long, R., Panel, M., Laure, L., Taranu, A., Gueguen, C., et al. (2019). Hsp22 overexpression induces myocardial hypertrophy, senescence and reduced life span through enhanced oxidative stress. FREE RADICAL BIOLOGY & MEDICINE, 137, 194-200 [10.1016/j.freeradbiomed.2019.04.035].
File in questo prodotto:
File Dimensione Formato  
65_Morin_etal_FRBM_2019_137_194.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 954.69 kB
Formato Adobe PDF
954.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/251599
Citazioni
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
Social impact