Wikipedia is nowadays one of the biggest online resources on which users rely as a source of information. The amount of collaboratively generated content that is sent to the online encyclopedia every day can let to the possible creation of low-quality articles (and, consequently, misinformation) if not properly monitored and revised. For this reason, in this paper, the problem of automatically assessing the quality of Wikipedia articles is considered. In particular, the focus is (i) on the analysis of groups of hand-crafted features that can be employed by supervised machine learning techniques to classify Wikipedia articles on qualitative bases, and (ii) on the analysis of some issues behind the construction of a suitable ground truth. Evaluations are performed, on the analyzed features and on a specifically built labeled dataset, by implementing different supervised classifiers based on distinct machine learning algorithms, which produced promising results.
Viviani, M., Bassani, E. (2019). Quality of Wikipedia articles: Analyzing features and building a ground truth for supervised classification. Intervento presentato a: The 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering, and Knowledge Management (KDIR), Vienna, Austria [10.5220/0008149303380346].
Quality of Wikipedia articles: Analyzing features and building a ground truth for supervised classification
Viviani, Marco
;Bassani, Elias
2019
Abstract
Wikipedia is nowadays one of the biggest online resources on which users rely as a source of information. The amount of collaboratively generated content that is sent to the online encyclopedia every day can let to the possible creation of low-quality articles (and, consequently, misinformation) if not properly monitored and revised. For this reason, in this paper, the problem of automatically assessing the quality of Wikipedia articles is considered. In particular, the focus is (i) on the analysis of groups of hand-crafted features that can be employed by supervised machine learning techniques to classify Wikipedia articles on qualitative bases, and (ii) on the analysis of some issues behind the construction of a suitable ground truth. Evaluations are performed, on the analyzed features and on a specifically built labeled dataset, by implementing different supervised classifiers based on distinct machine learning algorithms, which produced promising results.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.